Validation Suite Generation

volume 65 of July 1989.

This work has been published in pages 134-144 of journal Bigre,

CHRISTIAN QUEINNEC*
Laboratoire d’Informatique de PﬁkxﬂeﬁPolytechnjque
EqueICSLAf*
91128 Palaiseau Cedex

France

Abstract

To validate big systems is a very com-
plex task which has not been solved yet.
Many researchers have addressed the more
restricted problem of language validation
[Goodenough 81, Whichmann & Sale 80] but
still did not succeed. One reason is the lack
of a semantical definition of the language to
be validated, the other reason is that such a
semantics is often considered as a theoretical
object unable to provide more than meanings
to programs.

To validate a Lisp-like system is still a
large problem due to the number of its es-
sential constructs (special forms and other
unusual features like eval or multiple val-
ues) and to the size of its run-time sup-
port of which the garbage collector is the
main and most complex part. However
— since Scheme has only a few features
[Rees & Clinger 86] and may be considered as
an efficient A-calculus [Steele & Sussman 75],
— since A-calculus is the support of Deno-
tational Semantics [Stoy 77, Schmidt 86] and
denotational semantics for Scheme has al-
ready been published [Muchnick & Pleban 80,
Rees & Clinger 86] and eventually — since the
equation “program = data” holds in Scheme,
it seems therefore possible to make use of the

*This work has been partially funded by Greco de
Programmation.
**Interprétation, Compilation et Sémantique des
Langages Applicatifs

denotational semantics of Scheme to generate
validation suites.

The paper will present this technique, its
implementation (via streams) and some exper-
imental results.

Introduction

Languages are traditionally tested through a
validation suite i.e., a wide set of programs
each designed to exercize a few linguistic fea-
tures. This set usually also contains the pro-
grams explicitely showing that former bugs are
corrected: this property participates to what
is called “non regression”. To validate a lan-
guage only means that the associated compiler
(or interpreter) goes through all these pro-
grams and behaves as expected; erroneous pro-
grams must be rejected whilst correctly com-
piled programs are run and must fail or com-
pute the right thing. To detect these status
(failure or success) requires some cooperation
between the language and the operating sys-
tem: UNixlis particularly well suited for that
task.

Validation suites were produced for several
languages
among which Pascal [Whichmann & Sale 80]
and Ada’[Goodenough 81]. They usually

grow more and more as greater and greater

1UNIX is a trademark of AT&T.
2Ada is a trademark of the Ada Joint Program
Office.

deviance must be avoided. Validation suites
are often proprietary since their elaboration
cost a lot to companies.

Testing through validation suites can only
prove that on some programs (those of the
suite) the implementation of the language
seems to behave well. If tests are to be hand-
made, many problems will probably be en-
countered:

tests must be ordered they must only use
“safe” features to test new ones.

tests must be exhaustive
but whatever means “exhaustive” will be
probably too boring for human writers.

expected results of tests must be correct
since tests are programs, these programs
must be adequate to what they are sup-
posed to test: tests must be tested !

tests must be unbiased they must equally
look for regular or erroneous behaviours.

To know how a compiler is done allows
greater confidence in the validation suite. A
modularly built compiler encourages modu-
lar tests, for example, stack-manageing con-
structs may be tested apart heap-manageing
constructs and so forth. This confidence may
be measured by the “coverage ratio” which
counts the number of times each branch of al-
ternatives were taken during the tests. A val-
idation suite where all branches and all cycles
of the implementation were followed at least
once is probably better than one which has
not this property !

Programs obey to the grammar of the lan-
guage. To test a few linguistic features may be
viewed as the generation of the set of programs
following a sub-grammar containing only these
features. One has also to write the necessary
stuff to wrap them into fully complete and cor-
rect programs. Orthogonal languages allow to
derive small and separate sub-grammars and
thus modular tests.

Interesting grammars generate infinity of
programs so we must stop the generation pro-
cess where our confidence grows less than ex-
ecution time. A cost function may be defined

which given a test program returns its gener-
ation cost, for example, the number of syntac-
tical nodes in its parse tree. Our method pro-
vides a breadth-first generation according to
the cost function and thus avoids developping
too far any infinite branch of the grammar.

Houssais analysed the errors encountered in
the development of some Algol 68 compilers
[Houssais 84]. He showed that

e most of the known bugs might have been
found with a low generation cost,

e the bug discovery rate is quickly decreas-
ing.

These facts joined to combinatorial explosion
will therefore limit test generation.

All the previous points exhibit the empir-
ical nature of validation suite. A better ap-
proach is probably to generate bug-free com-
pilers from language semantics [Clinger 84].
But one cannot decide without tests if the (say
denotational) semantics of a language is what
s/he had in mind when designing it3.

Compiler Generation is an area where much
efforts are put on [Mosses 76, Appel 85]. The
main idea is to consider the denotational se-
mantics of a language as an object that can
be analysed in order to derive some proper-
ties: separation of the static and dynamic
semantics, type analysis, single-threadedness

. Some transformations may also be per-
formed on it to obtain interpreters or compil-
ers [Consel 88, Deutsch 89, Weis 87].

The case of Scheme may now seem easy.
Given a semantics of a language, a program
generator for this same language allow to gen-
erate validation suites i.e.; lists of programs
followed by the description of their expected
behavior and result. A denotational seman-
tics is a function which delivers denotations
i.e., A-terms which can be run with the initial
settings (the initial environment p;p;¢, the ini-
tial continuation K;pns¢ . . .) in order to compute
the expected result of the test. Since results
are generated, they are correct* with respect

3Gordon [Gordon 79] wrote in its thesis that “one
has to debug the semantics equations s/he produced”
4provided the A-evaluator is correct !

Scheme
—| Generator programs
sramm Validation
Suite
/* results —
Denotational A
Semantics Evaluator

L> demotatiomsJ

Figure 1: Validation Suite Generation (Synopsis)

to the semantics. Unbiased exhaustivity (un-
der a cost limit) may be obtained thus sparing
human efforts®. Tests are ranked by cost and
thus provide a safe ordering according to the
cost function.

Since the equation “Program = Data’ is
true in Lisp-like languages, it is therefore pos-
sible to synthesize new programs and very easy
to generate a test, compute its expected result
(via the semantics), run the test while trap-
ping success or failure and compare it to the
expected result. Another interest of Scheme
is that its grammar is so close from abstract
syntax that program generation is fairly easy.
This process is summarized in figure 1.

The generator will be explained in the first
section. Some of its uses, and mainly the
Scheme grammar, will be found in section two.
Section three will conclude with some com-
mented experiments.

1 The Generator

The generation technique is due to a cocktail
of streams and objects. The details of this pro-
cess are worth to explain since — (i) the prob-
lem of generating ordered expressions (from
simple to complex ones) is difficult — (ii) the
proposed solution is short and neat — (iii) the
solution may be adapted to other languages.

5But not computers efforts ! Non regression tests
may be scheduled during nights or hollidays where
most computer power is lost.

A stream is an ordered collection of data
which may virtually be infinite provided you
do not require all these data altogether. A
stream may be consumed giving an element,
known as its head, and a new stream represent-
ing its taili.e., the original stream less its first
initial element. In that way, streams are like
conses except that their tails are computed
lazily, that is to say only when really needed.
A thorough explanation of streams, imple-
mented by the Scheme primitives delay and
force, appears in [Abelson & Sussman 85, pp
242-272].

On the other hand, objects are entities with
internal state. Behaviours may be associ-
ated to objects by means of generic functions.
When such a function is applied, the classes
(or types) of its arguments determine the
method to be applied. Generic functions form
the main part of CLOS [Bobrow et al. 88].

Objects are not part of Scheme but can be
easily implemented with closures. For that

project, we used SCOOPS [TI-Scheme].

Principles of Generation

When designing a piece of code, the author
obeys to some principles or, at least, to some
visions of the dreamt code. The generator was
seen as a broad and intricated net of nodes pro-
ducing and ordering expressions and eliminat-
ing duplicate computations. To cope with this
requirements, we introduced an original tech-
nique with — (i) an unique view of streams as-

sociated with costs — (ii) a small set of stream
composers and — (iii) two operations to make
the net generate something.

A normal stream is made of a head (a gener-
ated expression) along with its generation cost
and followed by its tail. Something we will
represent as: 1X 1Y 1Z 2(X) 2(Y) ...

Where X, Y and Z have a cost of one and
where the following terms (X) and (Y) have a
cost of two. The dots represents the tail of the
stream. As generation cost function, we will
always take the total number of conses and
symbols of the expression.

Two operations make
CStream-transform® takes a stream and re-
turns a new and equivalent stream. This
new stream is a bit simpler since it is closer
to be a normal stream. The second opera-
tion is CStream-tail which, given a normal
stream, transforms its tail until it becomes
As a
side-effect, the tail of the initial stream is re-
placed by the normalized equivalent tail. This
side-effect avoids duplicate computations like
Scheme’s promise which are only force - d
once, see [Rees & Clinger 86]. This side-effect
does not compromise the functional behaviour
of these two operations since only equiva-
lent streams (by CStream-transform) are ex-
changed. We only use objects to implement
functional streams, to share methods and to
increase modularity.

Two kinds of streams exist, of which real
streams can be empty (represented by <>)
or normal (represented by an expression pre-
indexed by its cost and followed by its
tail). The other streams are compositions of
streams.

Joint streams orderly merge two streams.
<JOINT ;X 2(X) 2(Y) <>

+1Y 2(Y) 2 (D)) ... >
; 18, for example, equivalent to
1X 1Y 2(Y) 2 (X) <JOINT (Y) <>
+50((0) ... >

The main use of Joint streams is to order
streams. While other streams are more di-

streams evolve.

a normal stream and then returns it.

6Since the word “stream” is often used within
Scheme implementations and cannot usually be over-
loaded, we used the word “CStream” for Cost-Stream
which appears to be free.
tinue to name “streams” the entities which belong to
the CStream class.

Nevertheless we will con-

XY (X Y) ...
ol

1(4)

1((8))

Figure 2: Product Decomposition

rected toward generation, Joint streams do not
produce anything but regulate others produc-
tion. The regulation is fair and does not favour
any of its input streams.

Transduce streams convert a stream into
a new one applying a given function on
each of its element. A cost converting func-
tion is also supplied. The following example
uses (lambda (elt) (cons elt ’A)) and 1+

<TRANSDUCE 1X 1Y 1Z ... >
; 18 equivalent to
2(X . A) (Y . A) <TRANSDUCE ;Z ... >

Product streams take two streams and out-
put their “products”. FEach possible pair of
elements of the two input streams are sub-
mitted to a binary composition function. A
cost function must also be supplied, it is as-
sumed to be monotonic with respect to the or-
der. Suppose we want to multiply two streams
with cons and (lambda (costl cost2) (+ 1
costl cost2)): <PRODUCT :X 1Y s (X Y) ...

* 1A o(A) 3((R)) ... >
; 18 equivalent to
3(X . A) a(Y . A) 4 (X A) (Y B ...

A product stream 1is recursively imple-
mented. Just consider the result of a single
CStream-transform applied on the previous

example:
3 (X . A) <JOINT <PRODUCT ;X ;Y 3(X Y) ...
* o (A) a((R)) ... >
+ <PRODUCT 1Y 3(X Y)

* 1A <> >

One can easily recognize in the previous ex-
pansion that the product of every term of the
first stream by every term of the second one
follows the diagram of figure 2.

Kleene streams take an input stream and
deliver the stream of every sequence made
of the input stream. The mere effect of
a Kleene stream is, for instance, to have
<KLEENE X <>>

; generates
2(X) 3 (X X) 4 (XX X) ...

A Kleene stream is recursively (and cir-
cularly) implemented on top of the previous
stream-composers. Let us show how is trans-
formed a Kleene stream after just a single
CStream-transform: <KLEENE :X ;Y ...>

; 18 equivalent to
#1=5 (X) <JOINT <TRANSDUCE ;Y ...>
+ <PRODUCT 1X 1Y ...
* #1# > >

The trick is to pipe the output of a Kleene
stream expansion on itself. The whole output
stream (as labelled by #1=) is given as second
argument of the inner product (noted by #1#).
One may recognize in that expansion the clas-
sical identity

list = (symbol) + (symbol . list)
where symbol is the kleene stream of symbols.

The previous expansion requires the Kleene
operator to be only applied on an input stream
which has a normal head (or is able to be
transformed in such a stream).

The three following streams are purely tech-
nical but are given here for sake of complete-
ness since they will be used in the sequel.
Concatenated streams take two streams and
output the first one followed by the second
one. The resulting stream may not respect
order and is primarily used to boot up Kleene
streams which require their argument to be a
normal stream i.e., has a first element.

Relay streams
are indirections on other streams. This kind
of stream 1s only used for technical reasons
to keep a handle on successive transforma-
tions of a stream. Let us give an example
<RELAY <RELAY <RELAY X 1Y ... >>>

; 18 equivalent to
<RELAY X 1Y ... >

Delay streams enclose a closure which will
be invoked only when the stream will be asked
to transform itself. This technical stream is
used when a highly recursive or cyclic stream is
under construction. It can also be used to im-
plement streams produced by generators i.e.,
closures producing different values according
to their internal state. The only use we will
make hereafter of Delay streams is to delay
the evaluation of a variable by closing it. The

printed representation will show the variable
name.

As shown by the previous examples, streams
may be quite quickly rather intricated since
the transformation of Product or Kleene
streams, though simpler in a sense, generate
a lot of interconnected streams. A special
function for printing these structures show-
ing explicitely the types of the nodes and the
cycles has been devised. All results shown
in this paper are pretty-printed outputs of
CStream-display.

This kind of data structure is at its best in
Scheme since memory allocation is automatic.
The main problem while porting this code to
another more classical language will lie with
the dynamic memory management of streams:
a rather arduous problem if one needs effi-
ciency.

Grammars as Streams

If streams may seem to be adequate for ex-

pression generation, their use is not obvi-

ous. We thus need an easy way to devise

interesting streams. The syntactical form

make-Recursive-CStream takes care of that.

(make-Recursive-CStream name
stream-expression)

The first parameter: name, names the re-
sulting stream and encourages its recursive use
throughout the second parameter. The lat-
ter parameter stream-ezxpression, describes the
stream to be produced; it may have the follow-
ing form:

(+ stream-expression;...)

makes a Joint stream
(++ stream-expression;...)

makes a Concatenated stream
(* stream-expression;...)

makes a Product stream
(Kleene stream-expression)

makes a Kleene stream

If ones wants to produce all the expressions
composed of symbols X and Y, something that
would be produced by the equivalent gram-
mar: <self> ::= <var> | (<self>*)
<var> ::= X | Y

Then

one has only to write the stream expression:
(let ((var (make-enumerated-cstream

1y)))

;jvar is now bound to 1X 1Y <>
(make-Recursive-CStream self
(++ var (kleene self))))
<RELAY
<CONCAT <RELAY <DELAY var>>
++ <KLEENE <RELAY <DELAY self>>> > >

The stream expression is close from its
grammatical counterpart and thus easy to
write, used we are to Backus-Naur Form. The
Relay and Delay streams appearing in the ex-
panded form are only there to take care of mu-
tually recursive references to streams: Relay
allows to have a handle on those streams which
might be transformed before being used while
Delay differ the evaluation of a closed variable
thus providing, as in a letrec form, a refer-
ence to a location before using its content.

Synthesis of new streams is only possible
via combination of existing streams. An-
other stream-expression allows to describe how
streams are produced on a per element basis.
(letrec ((name; stream-expression;)

(namey, stream-expressiony))
term-expression)

The letrec stream specification builds
all the involved (and possibly mutually re-
cursive) stream-ezpression;; the transduc-
ing function (lambda (...name;...) term-
expression) is then applied on every result-
ing tuple: its results form the output stream.
Let us give an example taken from A—calculus
(make-Recursive-CStream self

;jvar is a stream of variables
(++ var
(+ (letrec ((variable var)
(body self))
‘(lambda ,variable ,body))
(letrec ((fn self)
(arg self))
‘(,fn ,arg)))))
<RELAY
<CONCAT <RELAY <DELAY var>>
++ <JOINT
<PRODUCT
<RELAY <DELAY variable>>
* <RELAY <DELAY body>> >
+ <PRODUCT
<RELAY <DELAY fn>>
* <RELAY <DELAY arg>>>>>>

This stream outputs A-terms which may be
variables, abstractions or combinations.
letrec also allows locally recursive streams

(make-Recursive-CStream self
(letrec ((exp (++ symbols
(* exp exp))))

such as

exp))
<RELAY
<RELAY
<CONCAT <RELAY <DELAY symbols>>
++ <PRODUCT
<RELAY <DELAY exp>>
* <RELAY <DELAY exp>>>>>>>

This stream outputs S-expressions based on
the symbols appearing in the base stream
symbols. Note also that the previous form
may have been directly written, taking advan-
tage of the implicit letrec offered with the
first parameter of make-Recursive-CStream,
as (make-Recursive-CStream self

(++ symbols (* self self)))
<RELAY
<CONCAT <RELAY <DELAY symbols>>
++ <PRODUCT <RELAY <DELAY self>>
* <RELAY <DELAY self>> > >>

Note that the two previous expansions, if
not strictly equal, are equivalent.

2 Uses of Streams

The previous generator can be exercized on
different topics. Since its main ability is to
generate expressions patterned after a gram-
mar, one can use it for example to test sim-
ple functions. An attempt for member may
be tested against each term of the stream
(define member-stream
(let ((symb (make-Enumerated-CStream
1 (A B C))
(make-Recursive-CStream ignore
(letrec ((expl (++ symb
(* expl expl)))
(exp2 (++ symb
(* exp2 exp2))))
“(,expl ,exp2)))))

This simple grammar covers well the main
potential erroneous situations that may be
given to member — an atomic or dotted list
as second argument, — a first argument which
may be a symbol or a dotted pair, — a first ar-
gument appearing or not in the toplevel terms
of the second argument.

All these situations are well-known but who
really cares to write, without omission, all
these checks? Here the power of the gener-
ator can be exercized, without much effort, to

cover all these cases and some others that may
have been neglected.

The Scheme Stream

It is now possible to express the whole Scheme
grammar. By virtue of make-Recursive-
—-CStream it can be straightforwardly written
as shown in figure 3.

One can recognize the productions concern-
ing the special forms of Scheme as well as
reference and normal application. With this
“Scheme-CStream”, one may obtain, one at a
time and in the natural order, correct Scheme
forms.

Tteration on Streams

Infinite streams cannot be totally consumed.
For all afore mentionned uses, one will prob-
ably only consume the first generated expres-
sions. The function iterate allows to apply a
function on the first elements of a stream. For
instance (iterate
(lambda (head cost)
(display ‘(member .
(newline)
(display (apply member head))
(newline))
member-stream
83)

,head))

will test member against the first 83 argu-
ments generated by member-stream.

Following the purest data-driven style of
which Lisp always makes great use, the whole
net is transformed again and again by two
operators implemented by generic functions.
CStream-transform inspects the head node
(and usually its input streams) and rewrites
it more simply. If the result is not a normal
stream, the net is one more time transformed.
When the head is a normal stream, its tail is
then transformed by CStream-tail and the fi-
nal equivalent version is recorded as the new
tail of the original stream. The stream appears
as a linear sequence of expressions followed
by a mess of intricated nodes circularly linked
when Product or Kleene streams are used. To
give an aper¢u of the complexity of the net,
see figure 4 where we developped only twice
member—-stream.

3 Experimentation

We exercize our generator on sub-grammars
of Scheme, and mainly on nested lambda and
call/cc. Since indefinite extent continuations
are difficult to implement efficiently, it is likely
to be some errors with them. Our experimen-
tation was worthwile because it leads to some
results.

e As expected, combinatorial explosion ar-
rives. Depending on the number of symbols
initially present in the “var” stream appear-
ing in the Scheme-CStream, there is a rapidly
increasing number of generated programs. Not
all of them are interesting since due to a—
or n— conversions, many are, in fact, equiv-
alent. This is not really true of all symbols
since (lambda (x) (call/cc x))

and
(lambda (lambda) (call/cc lambda))

are not equivalent: variables exclude key-
words.

e The cost function we adopt: counting
the number of conses and symbols of an ex-
pression, is adequate. Similarly, the compo-
sition function taken in Product or Kleene
nodes i.e., cons and 1list suit well the domain
of S-expressions generation. Therefore in the
Scheme realm, the default cost and composi-
tion functions need not be changed and may
as well be attached to classes rather than to
instances.

e To link the generator with a denotational
semantics is straightforward. Two solutions
exist

e generate a program, evaluate it, denote it,
evaluate its denotation, compare the two
results and continue

e generate a program, denote it, evaluate it
and store the program with its expected
result in a file which may subsequently
be read by a special toplevel loop which
read a program, evaluate it and compare
its result with the following expression in

the file.

The second solution allow to perform the
generation only once; the resulting file: the
validation suite, may also be edited before sub-
mission to an evaluator. When designing a
new evaluator, it is interesting to have this file

(let ((var (make-enumerated-CStream 1 some variables...)))

(make-Recursive-CStream self
(++ var
(+ (kleene self)
(let ((body (kleene self)))
‘(begin . ,body))
(let ((c self)
(th self)
(el self))
‘(if ,c ,th ,el))
(let ((v var)
(form self))
‘(set! ,v ,form))
(let ((variables (kleene var))
(body self))
‘(lambda ,variables ,body))
(let ((form self))
‘(quote ,form))
))))

; reference
; application

s sequence

; alternative

; assignment

; abstraction

; quotation

Figure 3: The Scheme Stream

since the new evaluator may be unable to gen-
erate its own tests.

e Among synthesized programs were found
some interesting ones. For instance,
we discover the following Scheme pearl
(call/cc call/cc)

Although not complex, do you guess what
it does? It is likely that, without systematic
synthesis, it would have been unrevealed for a
longer time.

e Another important problem lies with non-
terminating programs. The denotation is
reachable in a finite time but the result can-
not be finitely obtained. To generate such a
program breaks the suite ! Moreover one is
quickly found: ((call/cc call/cc)

(call/cc call/cc))

If you like this puzzle,
[Queinnec & Séniak 89] for details.

If such objects were in the file then we do not
know other methods than to manually remove
them from the validation suite.

see

4 Conclusions

We show and demonstrate a simple technique
for testing Scheme-like language evaluators
(interpreters or compilers). Given a syntac-
tical grammar and the denotational equations

defining the meaning of the programs conform-
ing to this very grammar, validations suites
can be easily generated. These validation
suites are sets of programs associated to their
expected behavior i.e., — compilation error,
— execution error or — correct with given re-
sult. The set is ordered according to the size
of the generated programs and provides ex-
haustive testing of the features present in the
grammar. The number of generated programs
can be arbitrarily long.

We describe an implementation for a syntax
directed generator made of only a few compo-
nents. Given a grammar, a recursive stream is
patterned after it. Streams are built on finitely
enumerated streams which are then composed
by four main composers: Joint, Transduce,
Product and Kleene. Two operators transform
the original stream and makes it develop itself
in a lazy way. The associated code is written
according Object Oriented Paradigms and is
pretty short.

Natural extensions can be thought of, each
times a process can be verified. The gener-
ation can then be exercised only to generate
tests which results can be checked by this spe-
cialized function.

(define member-stream
(let ((symb (make-Enumerated-CStream 1 (A B C))))
(make-Recursive-CStream ignore
(letrec ((expl (++ symb (* expl expl)))
(exp2 (++ symb (* exp2 exp2))))
“(,expl ,exp2)))))
<RELAY <PRODUCT <RELAY <DELAY expil>>
* <RELAY <DELAY exp2>>> >

(begin (CStream-transform member-stream) member-stream)
<RELAY {3}(4 A)
<JOINT <PRODUCT {1}A #2=<CONCAT #1={1}B {1}C <>
++ <PRODUCT <RELAY <DELAY expl>>
* <RELAY <DELAY expil>>>>
* <CONCAT #1#
++ <PRODUCT <RELAY <DELAY exp2>>
* <RELAY <DELAY exp2>>>>>
+ <PRODUCT #2# * {1}A <>>>>

(begin (CStream-tail (CStream-tail member-stream)) member-stream)
<RELAY {3}(4 4)
{3}(4 B)
<JOINT <JOINT <PRODUCT {1}A #4=<CONCAT {1}B #3={1}C <>
++ #2=<PRODUCT <RELAY <DELAY expil>>
* <RELAY <DELAY expil>>>>
* <CONCAT #3#
++ <PRODUCT <RELAY <DELAY exp2>>
* <RELAY <DELAY exp2>>>>>
+ <PRODUCT #4# * {1}B <>>>
+ {3}(B A) <JOINT <PRODUCT {1}B #1=<CONCAT #3#
++ #2#>
* <>>
+ <PRODUCT #1# * {1}A <>>>>>

Figure 4: The member-stream developped only twice

References

[Abelson & Sussman 85]
Harold Abelson, Gerald Sussman, with
Julie Sussman, Structure and Interpreta-

tion of Computer Programs, MIT Press,
Cambridge MA, 1985.

[Appel 85]
Appel A., Compile-time Evaluation and
Code generation for Semantics-directed
Compilers, PhD thesis, Carnegie-Mellon
University, July 1985.

[Bobrow et al. 88] Daniel G. Bobrow, Linda
G. DeMichiel, Richard P. Gabriel, Sonya
E. Keene, Gregor Kiczales and David
A. Moon, Common Lisp Object Sys-
tem Specification, SIGPLAN Notices,
September 1988.

[Clinger 84] William Clinger, The Scheme
311 compiler: An ezxercise in denota-
tional semantics, 1984 ACM Symposium
on Lisp and Functional Programming,
Austin, Texas, pp 356 — 364.

[Consel 88] Consel Charles, Realistic Com-
piler Generation using Partial FEvalu-
ation, Rapport d’activités ICS-LA 88,
rapport LIX 2-89.

[Deutsch 89] Deutsch Alain, Génération au-
tomatique d’interpréteurs et compilation
a partir de définitions dénotationnelles,

Rapport LITP 89-17 RXF, janvier 1989.

[Goodenough 81] Goodenough B., The Ada
Compiler Validation Capability, IEEE
Computer, June 1981.

[Gordon 79] Michael J. C. Gordon, The De-
notational Description of Programming
Languages: An Introduction, Springer-

Verlag, 1979.

[Houssais 84] Bernard Houssais, Analyse d’er-
reurs dans des compilateurs Algol 68,
Technique et Science Informatiques, Vol

3, N 4, 1984, pp 289-295.
[Muchnick & Pleban 80] Steven S. Muchnick,

Uwe F. Pleban, A Semantic compari-
son of Lisp and Scheme, Lisp Conference

1980, pp 56-64.

10

[Mosses 76] Mosses P. D.; Compiler gener-
ation using denotational semantics, in
Mathematical Foundations of Computer
Science, Mazurkievicz (ed.), pp 436-
441, Lecture Notes on Computer Sci-
ence, Springer-Verlag 1976.

[Queinnec & Séniak 89] Queinnec Christian,
Séniak Nitsan, Puzzling with current
puzzles, Lisp Pointers, vol. 2, 89.

[Rees & Clinger 86]
Jonathan A. Rees, William Clinger, Re-
vised® Report on the Algorithmic Lan-
guage Scheme, ACM SIGPLAN Notices,
21, 12, Dec 86, pp 37 — 79.

[Schmidt 86] David A. Schmidt, Denotational
Semantics, A Methodology for Language
Development, Allyn and Bacon, Inc.,
Newton, Mass., 1986.

[Steele & Sussman 75] Guy L. Steele Jr., Ger-
ald J. Sussman, Scheme: An interpreter
for the extended lambda calculus, MIT
Al Memo 349.

[Stoy 77] Joseph E. Stoy, Denotational Se-
mantics: The Scott-Strachey Approach
to Programming Language Theory, MIT
Press, Cambridge, Mass., 1977.

[TI-Scheme] TI-Scheme reference Manual.

[Weis 87] Weis Pierre, Le systéme Sam, méta-
compilation trés efficace a Uaide d’opé-
rateurs sémantiques, Thése d’Université,
Paris VII, Novembre 1987.

[Whichmann & Sale 80] Whichmann B. A
Sale A. H. J., A Pascal Processor Val-
idation Swuite, Report CSU 7/80, NPL,
Teddington, 1980.

