A Typeful Composition Model for Dynamic Software
Architectures

Frédéric Peschanski
Laboratoire d’'Informatique de
Paris 6 (LIP6)

Frederic.Peschanski@lip6. fr

ABSTRACT

Future generations of software systems should be able to
evolve consistently while they are running. To address this
problem, we propose a model and a domain-specific lan-
guage, named Scope, that offers the dynamic composition of
component-based software architectures. The basic consti-
tutive operation available is the establishment of a connec-
tion between two given components. Interconnected compo-
nents can exchange information in the form of anonymous
event emissions. Event types are used in our work both to
capture programmer’s intentions at the conceptual level and
to ensure type safety at the operational level. A type infer-
ence algorithm maps these two levels. Compositions can be
flat or recursive, the result being an architecture or a com-
posite component. Language-level extensions are proposed
through type confinement, connection labelling and compo-
nent refinement.

1. INTRODUCTION

Software architectures describe the overall structure of
complex computer systems rather than the details of their
implementations [2]. From this point of view, the architec-
tures are considered as interconnections of computational
components.

Following these principles but with a focus on operational-
ization, we present in this paper a model and a language,
Scope, which allow the incremental composition and modi-
fication of dynamic software architectures.

Using Scope, components can be added or removed at
runtime. The way these components are related to each
other can also evolve. To that effect, connections between
components can be established or removed while the system
is running, in a controlled manner.

We relate our work to the emerging field of Software evo-
lution which addresses more generally the complex problems
related to the design, implementation and execution of com-
puter systems that will evolve over time [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

Christian Queinnec
Laboratoire d’'Informatique de
Paris 6 (LIP6)

Christian. Queinnec@lip6.fr

Jean-Pierre Briot
Laboratoire d’'Informatique de
Paris 6 (LIP6)

Jean-Pierre. Briot@lip6. fr

Compared to existing work, we see three important con-
tributions highlighted in this paper.

First, the model proposes as foundation a taxonomy of the
data exchanged by components - the events and their types -
without any direct relation to the corresponding computer-
level representation. When connecting two given compo-
nents, a developer describes the nature of the exchanged
data: temperatures, prices, database requests and so on.
These informations correspond to the intentions of the de-
veloper, hence their designation as intentional types. Then,
an efficient type inference algorithm deduces the correspond-
ing effective types which describe the categories of data that
components will effectively pass to each other: integers, tu-
ples, and so on. This way, we foster the compositional issue
and its conceptual point of view while preserving the oper-
ationalization needs.

Second, the major interest of the linguistic approach we
adopt is that Scope considers events, event types, compo-
nents, component definitions as well as intentional connec-
tions as first-class entities. For example, we describe in this
paper a set of dataflow operators that can be considered
as parameterizations (which we will design as refinements)
of more abstract component categories. The addition and
multiplication operators of the example only differ by the
internal operation they realize. Ultimately, they conceptu-
ally represent components which receive and emit numbers
and should so be usable at this abstraction level.

Third, perhaps the most fundamental contribution of our
work also results from our linguistic point of view. Under
some conditions, an architecture - a set of interconnected
components - can be given the status of a first-class entity : a
composite component' which can be itself reused to compose
new architectures. We see this recursive composition model
as a very expressive and intuitive abstraction tool.

We decided to formalize precisely the type system and all
the language primitives introduced in this paper. The for-
malization itself is based on state-transition semantics owing
to the dynamic nature of the proposed model.

The paper begins with the description of the Scope com-
position model, from the structural point of view. First we
introduce in section 2 the event-based type system. Then
the component model can be itself elaborated in section 3,
as well as the whole flat composition model. We finally
introduce the composite components and the recursive com-
position model in section 4.

The Scope language is then presented in section 5. The ex-
ample we chose to illustrate this section is a simple dataflow,

!Sometimes called a nested component.

inspired by [4]. While very simple, it exhibits all the con-
structs of our language: component definition and use, event
management as well as some interesting language-level ex-
tensions: confined types, labelled connections and compo-
nent definitions refinement.

Finally, we relate our project to other research work and
conclude the paper.

2. TYPESYSTEM

We will begin our discussion by the elaboration of the type
system which represents the core constituent of our formal
model.

2.1 Event types

Types describe the events that components exchange at
runtime. The basic event types represent simple data types
like numbers or strings. But the type system itself is elabo-

rated incrementally and dynamically so more complex datatypes

can be added to the system when needed.

Definition 1. Let T be the type system, i.e. the set of
all the event types managed by the system at a certain time.

The elements of 7 are not independent, they can be re-
lated using different mathematical relations. In addition to
the implicit relations = and #, the most important one is
the supertype (resp. subtype) relation.

Definition 2. Let x and y be elements of 7. If z is a
supertype (resp. subtype) of y, then we note z > y (resp.
z <y).

We will also consider the strict variants > and <. We will
also say that two types = and y are related if and only if
x >yory>x. We will then note x ~ y. Unrelated types
will be noted z # y.

The supertype relation is a partial order: it is reflexive,
transitive and antisymmetric. we say that (7, >) defines a
partially ordered set or poset.

We also impose that our type system contains a unique
root element ,ie. A z€T /Ve €T, 2>z

A fundamental property of our type system is that for a
given type z in 7, there can be multiple associated direct
subtypes or supertypes because the (7, >) set is only par-
tially ordered. The following functions extract the minimum
(resp. maximum) supertypes (resp. subtypes) from a subset
Tof T:

Definition 8. Let T C T,
lub(T)=T\{z € T|3y € T,y < z}, and
glb(T)=T\{z €T |IyeT,y >z}

Figure 1 shows a graphical representation of a basic type
system. We can see that while being very simple, this type
system exposes some important properties. In many type
systems, real numbers and integers are considered as dis-
joint because they are represented in a different way at the
operational level while perhaps from a more intuitive point
of view, integers are particular real numbers.

To decouple the structure and the purpose of the type
system, we remain deliberately open regarding the interpre-
tation of types. The inference algorithms introduced in this
paper only captures the structural properties of the type

Control

Activate

Integer

Figure 1: Graphical representation of a type system

system. Set-based or logical semantics can be employed to
give meanings to the types themselves.

Another interesting property is the introduction of control-
related types like the Activate type. We explored the needs
for control links at the interconnection graph level in previ-
ous work [3].

2.2 Type system dynamics

The dynamic nature of the type system we define is a fun-
damental property. Initially, the type system is only com-
posed of the Event root type which is as expected related
to itself in the > relation:

Initial state 1. (T, >)init = ({Event}, {Event — Event})

Because the state of the type system will evolve over time,
we want to ensure the correctness of the changes operated
on it. To do so, we define an invariant of the type system
so that we can prove the state modifications by ensuring the
preservation of this invariant.

Invariant 1. (T,>) is a Poset and has a Unique root.

We can now introduce the fundamental operation of adding
a new type in the system. This operation is described as a
transition between the state of the type system before the
change, (7,>) and the corresponding after state, (7", >'):

add_type(t?,super?) : (T,>) —» (T",>")

t7¢T

super? # 0

super? C T

Vs1 € super?, Vsy € super?\{s1} then si # s2

T =TU{t?}
>'=(>U{s > t?|s € super?})*

The add_type operation takes two parameters®: t? which
represents the type to add to the type system (input type)
and super? as the set of direct supertypes of 7 (input set
of supertypes).

Suppose we want to add a new type Price® as having
Real and String as direct supertypes. The first precondi-
tion explains that the new type added must not preexist in

2We use question marks to suffix parameters.

3 A price could be considered as an amount represented lit-
erally or textually.

the type system. We must check that Price € 7. The di-
rect supertypes (Real and String) must also be disjoint, as
expressed in the last precondition.

The first postcondition, described in the last part of the
definition, expresses that if all the preconditions are fulfilled,
then the new type t7 is a valid type of the resulting type sys-
tem. In our example, Price will be a new element of the type
system. Next, we have to add all the mappings in the > re-
lation that relate our new event type ¢?. This is the reflexive
and transitive closure of the mapping from all the direct su-
pertypes in super? to t?. Price should be related to the set
{Price, String, Real, Number, Data, Event} which reflects
the fact that Price > Price, String > Price, Real > Price
and so on.

3. FLAT COMPOSITION MODEL

We call flat composition any assembly of related compo-
nents which form an architecture. In order to allow flat com-
position, we have to explain how components can be added
to existing architectures and then how to relate components
using connections.

3.1 Components

At the structural level, a Scope component is an abstract
entity defined by an identifier and a type. The component
type is defined as follows:

Definition 4. A component type is a couple (In, Out)
where In (resp. Out) is the input type (resp. output
type) of the component, represented as a set of types.

Informally, In (resp. Out) describes the kinds of event
a component is able to receive (resp. likely to emit). It
is important to note that there exists no relation between
the types of In and those of Out. This way, we avoid an
important covariant/contravariant issue as found in most
typed object models [7].

Moreover, In and Out are, mathematically speaking, sets
So a given type cannot be declared twice in the same set.

However, related but different types can be declared in
either In or Qut. Consider for example the component type:

({Data, String}, {Integer, Real})

While the input and output types indicated are related in
the subtyping relation, these component types are perfectly
valid.

So, a component type corresponds to a logical description
stating conceptually which kinds of data a component is able
to receive or likely to send. Other component models com-
pel “physical” considerations through pins [4] or ports [8].
We will see in section 5.6 that we can model such physical
entities in Scope through labelled connections.

A component is, from the type system point of view, de-
fined like this:

Definition 5. A component is a couple (Id, T'ype) where
Id identifies the component and Type = (In,QOut) is the
component type as defined above.

Let’s describe a dataflow operator addl which performs
additions of real numbers:

{addl, {{Real}, {Real}))

Conceptually, this additioner receives and sends sequences
of real numbers. Following a common dataflow behaviour,
the corresponding operational component (as described in

section 5.2.1) will perform the addition as soon as possible,
that is, when two numbers will be available. Each time an
addition is realized, a result event is sent through the com-
ponent output. A possible graphical representation of this
component is depicted in figure 2. Note that we associated
a name (AddReal) to the component definition, because of
its first-class status.

addl : AddReal

Figure 2: Graphical representation of a dataflow ad-
ditioner

3.2 Effective connections

Because of their dynamic nature, connections have an op-
erational meaning hence their designation as effective con-
nections.

Definition 6. An effective connection is a triplet
(Idy, Ids, T) where Idy and Id, identify the source compo-
nent c¢i1 and the destination ca. T is the set of effective
types of the connection.

The main information to point out in the previous defi-
nition is that 7' denotes a set of types designed as effective.
This set explains which kind of events can be sent to ¢2 from
c¢1 using the given connection. From now on, an event of type
t1 can be sent to ¢z using the connection £ = (Idi, Id2, T)
if and only if Ity € T such asts > ti.

For example, Figure 3 describes the effective connection
{addl, add2, { Real}) between two additioners addl and add2,
realizing a quaternary additioner dataflow that can work on
real numbers or any subtypes (like integers).

Real
o Red H Red @ ¢ Red H Red o

add1:AddResl add2:AddResl

Figure 3: Graphical representation of an effective
connection between two components

Note that because of the decoupling between the input
and output types, the connections in Scope are unidirec-
tional while other approaches introduce bidirectional links
[4] [11]. Of course, bidirectionality can be obtained through
connection composition.

3.3 Architectures

A Scope architecture is a running system composed of
interconnected components. From a formal point of view, an
architecture then agglomerates a set of components together
with a set of effective connections.

Definition 7. An architecture A is a couple (C, Z) where
C is the set of components which compose the architecture
and Z is the set of effective connections describing how the
components in C are related to each other.

An operational system will then be the association of a
type system and an architecture:

Definition 8. An operational system is a couple:
((T, >), A) where A is the architecture managed by the op-
erational system.

Initially, the system is empty:
Initial state 2. ((T,>), AYinit = {{T, >)init, (0, 0)).
We then define an invariant for the operational system:

Invariant 2. The type system invariant must be satisfied,
and:

e Ver = (Idy, Typer) € C, Vea = (Ida, Type2) € C\{c1},
Idy # Ids

o V¢ =(c1,c2,T) € E,

— c1 = (Idi, {(In1,Out1)) € C
— ¢2 = (Ida, (Ina,Outs)) € C
—vtET,aheoutl/tht
—VteT, Ity € Inay [ta >t

Added to the expected preservation of the type system
invariant, the operational system invariant must also ensure
that all the components in the system have different identi-
fiers. The third statement expresses that every established
connection references valid source and destination compo-
nents.

The effective types T' must also be “compatible” with the
types of the source and destination components. First, this
set must contain types that are related to at least one out-
put type of the source component. This way, any event
communicated through the connection can be emitted from
the source component. Suppose that a number connection
is connected to a real output. Each real number event will
be emitted through the connection while unrelated or more
generic numbers will be silently rejected.

The final condition says that for every effective connection
type, there must exist a supertype in the destination com-
ponent inputs. This ensures that the destination compo-
nent can handle every types of events emitted by the source
component using the connection. If only real numbers are
accepted by a component, then an Integer connection is in-
consistent because integers have some properties not avail-
able in more general numbers (like a successor).

3.4 Operations

After having described the invariant and the initial state
of our operational system, we can introduce the different
primitive operations allowed on it. The type system itself
is not modified by any of these operations except add_type
which has been described previously. So, from now on, we
will only describe the architectural modifications of the sys-
tem.

3.4.1 Adding and removing components

The new operation which allows the introduction of a new
component in the system is defined as follows:

new(c? = (Id?, (In?,Out?))) : (C,E) — (C’,T')

(In?, 0ut?) C (T, >)?
Ve = (Id, Type) € C,Id # Id?

C'=CuU{c?}

As preconditions, we must ensure that the input and out-
put types of the component to add to the system are valid.
Its identifier must also be different from the ones already
defined by the system. If these preconditions are satisfied,
then we can effectively add the component by a simple up-
date of the C set. The other elements of the system remain
unchanged. The removal of a component can then be de-
fined:

remove(Id?) : (C,E) — (C’, &)

e = (Id, Type) € C/Id = Id?
V€ = {c1 = (Id1, Type1), ca = (Idy, Typez), T) € E
then (Idy # 1d?) A (Id» # 1d?)

¢ =C\{c}

It is important to point out that this removal transition
can only take place when the component to remove is not
connected to any other component. We will define a more
useful removal operation in section 3.5.3.

3.4.2 Establishing connections

The establishment of a connection between two compo-
nents expects three informations: the identifiers of the source
and destination components and an intentional connection
type, which can be under some condition omitted.

We identified three different ways to connect components
that, while preserving the system invariant, correspond to
specific and meaningful intentions from the programmer’s
point of view: specialization, generalization at source and
generalization at destination. The fundamental property,
common to all the connection categories, is that the effective
types of the resulting connection are always subtypes of the
intentional connection type.

3.4.3 Connection by specialization

In most situations, components will be connected through
a specialization algorithm. The idea is that we want to de-
scribe the connections at a higher level of abstraction than
the description of the components themselves.

Suppose for example that we implement different dataflow
operators which work on strings or numbers. We would like
to describe the connections between these operators at a
higher level of abstraction, for example by indicating that
in each case, they emit and receive events of type Data (a
common supertype of Number and String).

Consider the components ¢1 = (Idi, (0, {Integer})) and
co = (Id2, ({Number}, §)).

If we use Data as the intentional connection type, the
system should infer Integer as effective type when we try to
connect ¢1 to c2 by specialization because this is the exact
type of the events emitted by c1 (see Fig. 4).

Integer
Integer ® e Number

C1 Cc2

Figure 4: Connection by specialization

The output type chosen at the source component must be,
in the specialization case, a large subtype of the destination
input type. This is the case in our example since Integer <
Number. Both must be also subtypes of the intentional
type, a condition fulfilled by our example.

The result is the connection & = (Id1, Ids, {Integer}).

At the operational level, we can then ensure that events of
type Integer (and all its subtypes) can now circulate from
c1 to ¢z through £.

Sometimes, more than one effective type should be in-
ferred. Suppose that we add a type Complex to the outputs
of ¢1. Then, when choosing the effective types, both Integer
and Complex match so the resulting connection should be:

& = (Idy, Idy, {Integer, Complex})

On the other hand, the effective connection types cannot
be resolved if we try to connect the same components us-
ing a too specialized intentional type, for example Binary®.
There is no output type in ¢1 or input type in ¢» which are
specializations of Binary.

Now that we exposed the principles of the connection by
specialization primitive, we can give its definition:

connect_specialize(Id; ?,1d2?, t?) : (C,E) — (C’,E")

301 = (Idl, (Inl,Outl)) € C/Id1 = Idl7
e = (Ida, (Ing, Outa)) € C [Idy = Id»?
T1 = glb({t1 € Out1 |t1 <t7}) # 0

T> = glb({t2 € Ina [ta <t7}) # 0
T={teT |3t eTrt<t'}#£0

E = (Cl,Cz,T) ¢ =

c’'=c¢C
2 =5U{g)

The first and second preconditions make sure that the
components involved by the connection already exist in the
system. The third precondition defines a set of types called
T, which contains all the largest subtypes of the intentional
connection type t? in the output types of the source compo-
nent, using the glb function defined in section 2. This set,
for the connection to work, must be different from the empty
set. The set T is then defined as the largest subtypes of ¢7
in the inputs of the destination component which also must
be non-empty.

We then define the set T of the effective connection types
including all the elements in T; that have at least one sub-
type in T5. This makes sure that the events sent by the
source components can be received by the destination com-
ponent. If this set is empty, then the connection fails. Fi-
nally, as a last precondition, the new connection, with ef-

“We suppose Binary, representing binary numbers {0,1},
as being a subtype of Integer.

fective types T as defined above, must not preexist in the
system5.

We can note that, from the definitions of 71, T> and T,
we have Vt € T, t < t?. This is consistent with the property
that the effective types of a connection are subtypes of the
intentional connection type.

The most important postcondition states that the system
now as a new connection established.

3.4.4 Generalization at source

In some cases, an output type can be used as a dispatcher
between different intentional subtypes. The idea here is to
connect a generic component to more specialized ones, us-
ing subtypes to dispatch the events between the different
destinations.

Consider the components:
c1 = (Ids, (@, {Number}))7 ez = (Ids, ({Integer},(b)),
and c3 = (Ids, ({Complex}, 0)).

o Integer

Integer

Number @]

Complex
Cc2

o Complex

C1

Cc3

Figure 5: Type-dispatcher component using connec-
tions by generalization at source

We would like to connect ¢1 to ¢ for the type Integer
and c¢; to c3 for the type Complex as depicted in Figure
5. A possible interpretation would be to associate c1 to a
component that asks the user to enter a number with the
keyboard. If an integer is entered, then an event in sent to
c2 while if the user enters a complex numbers, the event is
sent to c3.

Using a specialization connection category would lead to
a refusal since Number is both a supertype of Integer and
Complex. In this situation, where c¢; is identified as a type
dispatcher for subtypes of Number events, we can use the
connection by generalization at source to obtain the follow-
ing effective connections :

o ¢ = (Id1,Ids, {Integer}) using the declared type Integer

and

o ¢y = (Idy, Ids, {Complex}) using Complex.

This case won’t lead to an error, we will silently reject the
connection since it has already been established.

This variant can be formalized like this®:

connect_gen source(Id;?,1d2?,t?) : {C,E) — (C",Z')

T = lub({t1 € Outy |t1 > t7})

U glb({t1 € Outy |t1 < t?7}) £ 0
Ty = glb({tz € Ino |t2 < t?}) 75 @
T={teT|3# €T, t<t'}#0

The main difference with the connection by specialization
operation is that now, the lookup phase will also extract all
the smallest supertypes (using the lub function) of the in-
tentional connection type in the outputs of the source com-
ponent. Then, as usual, the largest subtypes are searched
at both ends of the connection. The resulting set of effec-
tive types will then be the types in these inputs that have a
supertype in the selected source outputs.

But even if the chosen source types can be generalizations
of the intentional connection type, the fact that T' C T still
leads to the property: Vt € T, t < t7.

3.4.5 Generalization at destination

The complementary connection category of the previous
one is the connection by generalization at destination.

The idea is now to connect a generic component as desti-
nation of some specialized sources.

Integer @_|

Integer

Complex
c1 /
Complex o]

Cc3

c2

Figure 6: Type-concentrator component using con-
nections by generalization at destination

Suppose we want to connect c¢1 = (Idi, (0, {Integer}))
and c2 = (Ids, {0, {Complex})) to cs = (Ids{{Data},))
(see fig. 6).

Here c3 can be designed as a type concentrator compo-
nent. It could for example represent a useful generic data
inspector.

The definition of the corresponding operation follows:

connect_gen dest(Id:?,1d27,t?) : (C,E) — (C’,Z)

Ty = glb({t1 € Out1|t1 <t7}) #0
Ty = lub({t2 € Inz |t2 > t7})

U glb({t2 € Ina |t2 < t?7}) #0
T={ecT|H e, t<t'}#0

Now, this variant chooses subtypes of the intentional con-
nection type at source but possibly supertypes at destina-

50nly the modified conditions are indicated in the descrip-
tion.

tion. Anyway, the operation still ensures that the final ef-
fective types are subtypes of the intentional type.

3.4.6 Removing connections

The connection removal operation is, from a structural
point of view, very simple. It is defined like this:

disconnect(Id:?,1d2?,t?) : (C,E) — (C", =’

der = (Idy, (Iny, Outr)) € C [Idy = Idi?
ey = (Ida, {(Ing, Outs)) € C [Ids = 1dy?
E?={¢ ={c1,c2, T) |Vt ET, t? >t} #0

The effect of the disconnect primitive is to remove all the
connections from Id;? to Id»? for any (large) subtype of ¢7,
if they preexist in the system.

A variant disconnect_all allows the parameter t? to be
omitted. The generic connection type is then associated to
Event. The result will be the disconnection of all connec-
tions from Idi? to Id»?.

disconnect_all(Id;?,1d2?) : {C,E) — (C',E")

Er={={c1,e2,)} #0

We could have defined disconnect_all in a simpler way:
disconnect_all(1d1?,Id2?) = disconnect(Id1?,Id>?, Event)

Another variant, disconnect_component, is a similar prim-
itive that disconnects all the connections to and from a given
component. It is defined as follows:

disconnect_component(1d?) : {C,E) = (C',Z')

Je = (Id,{(In,Out)) € C/Id = Id?
E? = {{c1,¢,T) € E|c1 € C}
U{(c00,T) € Zlcz €C} £ 0

3.5 Compound operations

Using our primitives defined in the previous section, we
can define some other important compound operations.

3.5.1 Compound connection kinds

The choice of a given connection kind is highly contextual.
It depends at the same time on the intentional type and on
the concerned component types.

Thankfully, this choice can be in most cases inferred au-
tomatically through a simple algorithm which is described
as the following compound operation:

connect(Id1?,Ids?,t7)) =
let c; = (Idl, (Inl, Outl)) € C/Idl? = Idl, and
c2 = (Ida, {Inz, Outz)) € C / Idy? = Idy, in:
if glb({tl € Out, |t1 < t‘?}) 7é @ and
glb({t2 € Ima|t2 <t?}) #0
then connect_specialize(Id17, Id2?,t7)
elseif lub({t1 € Out1|t1 > ¢7})
Uglb({t1 € Out1 |t1 < t?}) # 0
then connect_gen_source(Id,?,Id2?,t7)
else connect_gen_dest(Id1?,Id2?,t7?)

In some situation, more than one connection kind can
be established. In this case, we impose a priority on the

different operations, the specialization case being the most
prioritary one.

This choice results from different experiments and follows
the intuition that we generally want to specialize the connec-
tion types. When it is not the case, dispatchers are generally
not connected to concentrators for the same type (and vice
versa). It is difficult to think about a component receiv-
ing (resp. sending) at the same time very specific and very
generic events in the same type branch. So, the priority or-
der between both kinds of generalizations could almost be
chosen in a random manner.

In order to reduce the number of connections to declare,
another variant establishes all the possible connections be-
tween two given components:

connect_all(Id,?,1d2?,t7)) =
connect_specialize(I1d1?, Id2?,17?) ;
connect_gen_source(Id1?,Id2?,t7?) ;
connect_gen_dest(Id,?,1d27?,t7?)

The semi-columns here form a sequence of operations where
the operations on the left part of the semi-columns must be
applied before the operation on the right part.

3.5.2 Fully inferred connection kind

Using the most general type in the system, we can com-
pletely infer the result of the connection from the structure
of both the concerned components:

connectanfer(Idi?,Id2?) = connect(Id1?,1d2?, Event)

Note that this variant is more prone to ambiguities be-
cause it does not capture the programmer’s intent. How-
ever, in many simple situations, this primitive can be used
safely”. This primitive can also be of great help to discover
how two given components could be connected®.

3.5.3 Compound component removal

By removing first all the connections that relate a compo-
nent to other ones using the disconnect_component primi-
tive, we can then safely use the remove primitive to remove
the component from the system.

remove_gen(Id?) = disconnect_component(1d?) ; remove(Id?)

4. RECURSIVE COMPOSITION MODEL

Recursive composition allows architectures to be consid-
ered as composite components. The main problem here con-
cerns the type of the resulting component because it should
not be independent of the associated architecture.

Consider again the architecture depicted in Figure 3. It
represents a double additioner dataflow which realizes the
addition of four successive real numbers.

Suppose that we want to create a composite component
C which declares that it receives and sends events of type
Activate®, and is associated to the double additioner archi-
tecture.

"For example, when it’s obvious that there exists only one
way to connect two given components.

8Gilent operationalizations should be proposed to test con-
nections without realizing them.

"Without being activated, the dataflow will pass events
silently.

In order to define the composite type, we first select the in-
put and output types declared at the composite level. Here,
C declares that it receives and sends Activate events. These
form the basic types of the composite component.

Then, we have to add to these basic input and output
types all the types in the inner architecture that are not
concerned by any inner connection. For example, Real is an
input type of the inner component addl and is not in any in-
ner connection. We the say that Real is an unsatisfied input
type of the inner architecture. We can remark that Real is
also an unsatisfied output type of the inner component add2.

So finally, the resulting composite will be defined by the
triplet (C, ({ Real, Activate}, { Real, Activate}), A) where A
is the associated architecture, as shown in figure 7.

®Real Rea ®

‘.RedHRea ReeAHRaer/

addl:AddReal add2:AddReal

C: DoubleAddReal

Figure 7: Graphical representation of a composite
component

The general rule for defining the type of a composite com-
ponent is given below:

Definition 9. A composite component C is a triplet
(Id,{In,Out), A= (I, I¢)) such as:

e Id is the identifier of the component

e 7. isaset of inner components Z. = {i. = (idc, {(inc, out:))}

e 7; is a set of inner connections Z¢ = {i¢ = (idc,,idc,, T)}

e In = BasicInUInnerIn is the input type of the com-
posite component such as:

— BasicIn is the set of its basic input types,

— Vic € I, Vt € inc, (t € Inneln) iff
Vig c Ig /idel = idc, Ve, € T, (Ct '][J t) \Y (Ct < t)

o Out = BasicOut U InnerQOut is its output type such
as:

— BasicOut is the set of its basic output types,

— Vic € I, Vt € outc, (t € InnerOut) iff
Vig S I§ /idc2 = idc, Ve € T, (Ct 7(4 t)

The most difficult part of the formal definition concerns
the definitions of the sets InnerIn and InnerOut. In fact,
we simply formalize the process of selecting the unsatisfied
input types as being those that are not concerned by any
connection involving the inner components.

It is important to note that, in our approach, composite
components are more than just their associated architecture
: they have their own properties. For example, C is par-
ticipating to an activation protocol though this is not the
case of the inner double additioner. However, the composite
properties are partially resulting from the associated inner
architecture. C can handle real numbers only because the
associated architecture is providing this service.

We think this approach corresponds to a real expectation
when considered from the real world. Consider for example
the model of a car, described intuitively as the composition
of different components : body, motor, transmission, tires,
and so on. While some properties of the car (such as its horse
power) directly result from its composition, other properties
are associated to the car itself : average consumption, max-
imum speed and so on.

5. THE SCOPE LANGUAGE

The Scope language, itself the implementation of the Scope
model described previously, is an extension of the Scheme
language [5], written in Scheme!©.

A Scope application can be composed of declarative and
embedded statements. The declarative statements are made
inside Scope definitions while the embedded ones are regular
Scheme expressions. A definition is composed of a sequence
of statements which are globally analyzed and interpreted
by the Scope interpreter. A program itself is a Scheme pro-
gram or script, with some extensions. These extensions are
embedded constructs like functions or macro-definitions.

5.1 Event management

The main information added to the concept of event at
the operational level is a set of denoted values called slots.
The event construct is used to define a new event type:

(event Data
(super Event)
(slot value))

This adds a new type called Data which has for unique su-
pertype Event and which defines a unique slot named value.

The make-event primitive creates an event instance, rep-
resented internally as a closure, that is, a function and an
attached environment.

For example, we can declare a new event of type Data like
this:

(define ev (make-event 'Data))
==> ev: #[closure arglist=(message . args)]

After having instantiated an event of a given type, we
can interact with it using a set of methods falling in two
categories:

e Accessors to get the values of the different slots in the
event, prefixed by get-.

e Mutators to change the slot values. The prefix indi-
cated in this case is set-. We also postfix them with
an exclamation point!!.

10WWe see Scheme and its reflective capabilities as an excellent
environment for supporting domain-specific languages.

71t is usual to use the ! symbol to suffix imperative con-
structs in Scheme.

We know that the event type Data defines the slot value.
To set a new value for this slot and then read it, we can use
the corresponding mutators and accessors like this:

(ev 'set-value! 10)
(ev 'get-value)
==>10

A restricted form of introspection is also provided by some
management methods:

(ev 'get-type)

==> Data

(ev 'get-supertypes)
==> (Event)

(ev 'get-slots)
==> (value source)

The slot source is defined by the root type Event. It iden-
tifies the last sender of the event'2.

5.2 Component management

Similarly to events, we distinguish in Scope the descrip-
tions of the components we will use to create the architec-
tures and their instances. In our terminology, a component
is an instance and a component definition is its description.

Compared to our formal model which is mainly focused on
the type system, the components we implement provide a lot
of features besides their types. Practically, a component?
consists of:

e A unique identifier,
e the definition name of the component,
e its input and output types,

e a corresponding set of functionalities,

a set of properties,
e an initializer, and

e a set of local functions

There is at least one functionality for a given input type.
It explains how to react to the reception of a compatible
event. The component properties describe the internal state
of the component while the initializer allows this state to be
initialized at runtime. It is interesting to note that in our ap-
proach, the instantiation and initialization phases are clearly
distinguished, allowing co-instantiation as in [10]. Finally,
the local functions define some implementations that the de-
velopers would like to attach to a given component while not
being functionalities on their own.

5.2.1 Component definitions
Our first example will be the definition of the addition

operator depicted in Figure 2:

(component AddReal
(receive Real)
(send Real)

12 A value of null indicates that the event was sent from the
top level environment.

3For the moment, we are only describing flat components,
composites are detailed in section 5.4.

(property readonly opl)

(when Real (in-event)
(if (eq? opl 'null)
(set! opl (in-event 'get-value))
(let ((out-event (make-event 'Real)))
(out-event 'set-value! (+ opl (in-event 'get-value)))
(set! opl 'null)
(send out-event)))))

The definition name of this component is AddReal. Using
the receive and send constructs, we declare that the com-
ponent receives and sends Real events. The property opl is
not initialized, so its default value will be null. The readonly
modifier indicates that the value of the property is readable
from the outside of the component, but not writable. Then,
the functionality corresponding to the input type Real is de-
fined in a when clause. The body of our functionality is a
simple algorithm that expects two successive numbers and
then outputs their sum.

It is very important to note that, as expected, the send
primitive which realizes the effective emission of event does
not reference the destination component.

Constant generator is another interesting category of com-
ponent in the case of dataflow systems. The purpose of such
component is to generate a constant value when it is acti-
vated. This allows a dataflow to be fed with preprogrammed
values instead of user supplied data.

The real number generator is defined like this:

(component GenReal
(receive Activate)
(send Real Activate)

(property readonly constant)

(initialize (iconstant)
(set! constant iconstant))

(when Activate (in-event)

(let ((out-event (make-event 'Real)))
(out-event ’set-value! constant)
(send out-event)

(send in-event))))

When a component of type GenReal receives an Activate
event, then it sends the constant it contains (as a property)
and propagates the activation pulse. The initialize clause
defines the component’s initializer. When such an initializer
is provided, the component has to be initialized before being
used.

5.2.2 Component instantiation

Components (or component instances) can be created from
a definition name using the make-component primitive. For
example we can create a number generator in the following
manner:

(define generator (make-component 'GenReal))
==> generator: #[closure arglist=(message.args)]

To be able to communicate with each other using events,
two given components must be first connected. We intro-
duce the connection primitive in the next section. How-
ever, components also provide some management methods.
These functionalities are generally used from the toplevel en-
vironment to configure or introspect the components. Let’s

demonstrate the use of the most common management meth-
ods:

(generator 'get-def-name)
==> GenReal

(generator 'get-input-types)
==> (Activate)

(generator 'get-output-types)
==> (Real Activate)

A method initialize is also created to invoke the com-
ponent initializer if it is defined. Let’s give a default value
for the constant generator:

(generator 'initialize 3.14159265)

A specific accessor is associated to each readonly property,
so we can read the constant value of the generator:

(generator 'get-constant)
==> 3.14159265

If the property is declared as public, then a mutator is
also provided.

5.3 Connection primitives

In order to demonstrate the use of the different connection
primitives, we will build a simple dataflow example whose
purpose is to convert temperatures from Fahrenheit to Cel-
sius degrees.

We can start by defining a simple temperature type:

(event Temperature
(super Real)
(slot unit))

A temperature will be a temperature value (provided by
the Number type) and a unit symbol: C or F. The formula
to convert a tempr temperature in Fahrenheit degrees to a
tempc temperature in Celsius degrees is given below :

tempc = (tempr + —32) x g

In order to build our dataflow, we will need an AddReal
and a MulReal** component as operators as well as two Gen-
Real constant generators. The following script creates and
initializes these components:

(define add (make-component 'AddReal))
(define mul (make-component 'MulReal))
(define constl (make-component 'GenReal))
(constl 'initialize -32)

(define const2 (make-component 'GenReal))
(const?2 'initialize (/ 5.0 9.0))

Now, we can apply the connect primitive to connect the
constl component to add and const2 to mul. Since our com-
ponents manage, at a conceptual level, numbers, we will
declare the intentional type Number for the connections:

(connect constl add 'Number)
==> (Real)
(connect const2 mul 'Number)
==> (Real)

“The definition of MulReal is almost identical to the one of
AddReal.

We can remark that there is no ambiguity when connect-
ing a real generator to a real operator, so we could have used
the connect-infer primitive:

> (Real)

(connect-infer constl add) =
) ==> (Real)

(connect-infer const2 mul) ==

We also have to connect our add operator to the mul com-
ponent as its second input with (connect add mul 'Number).

The figure 8 shows our partial architecture of the temper-
ature conversion dataflow. This architecture is only partial
because we do not know yet how to provide the missing in-
formation: the temperature to convert. We also have to
use the result of the conversion, for example by printing it
on the screen. Finally, the activation of the whole dataflow
should be resolved.

® Activate Activate ® ® Activate Activate ®
Real Real
B * Number
constl : GenReal const2 : GenReal 7 Redl ‘ ‘ Red @
Real mul : MulReal
Number
Nra | [rat 4
add : AddReal

Figure 8: A partial architecture of a temperature
conversion dataflow

First, we will define a very generic component whose pur-
pose is to print any kind of Data®S:

(component DataOutput
(receive Data)

(when Data (event)
(print (event 'get-value)))

(function public print (arg)
(display arg))

(function public newline ()
(newline)))

Let’s create a DataQutput instance:

(define out (make-component 'DataOutput))
(out "print " Hello world™)
==> Hello world

We can see in this example that every public local function
(such as print) is associated to a method of the same name.

What we intend to do next is to connect this component
as destination from the result of the conversion, emitted
by the mul component. We recognize here a typical gener-
alization at destination configuration where the specialized
events (real numbers) must be communicated to a generic
component, accepting all kind of data. However, the cate-
gory of connection, as we explained in section 3.5.1, can be
omitted :

15 As long as the value slot is printable.

(connect mul out "Number)
==> (Real)

Finally, we will define a generic input component, both
responsible of data input and activation:

(component Datalnput
(receive Activate)
(send Data Activate)

(function public activate ()

(when Activate (event)

)

When receiving an Activate event or when the public func-
tion activate is invoked, the component will wait for the user
to enter a value using the keyboard. Then, depending on the
type of this input, a more or less specialized event will be
generated.

The distinctive trait of the Datalnput component defini-
tion is that it is typical of type dispatcher components. It
generates a generic event type (Data) and is meant to be
connected for subtypes. This is a common generalization at
source configuration. Let us connect this component to the
converter:

(define in (make-component 'Datalnput))
(connect in add "Number)
==> (Number)

Finally, our architecture must be completed by setting the
activation links as depicted in figure 9. We can then start a
conversion by activating the in component:

(in "activate)
? 68
20

While our example is very basic, any dataflow architec-
ture with more complex operators might be created using
the same principles. It is also important to notice that we
created the converter dynamically and incrementally. At
each step of the structuration, the type system ensures that
the connections will lead to correct communications of data.

5.4 Composite components

In the previous section, we built a temperature converter
as an architecture, composed of a set of interconnected com-
ponents. If we only consider the logical part of this compo-
sition, we see an architecture which receives real numbers
(input temperatures) and sends real numbers (output tem-
peratures). The composite component framework, as pro-
posed in Scope, will help us to reuse this architecture to
create a stand-alone component.

The composite declarative statement allows the creation
of a new composite definition. All the constructs available in
flat component definitions can be used to describe a compos-
ite. The embedded architecture creation and management
is handled by a set of extra constructs.

In order to build an actual converter component, we can
start by simply stating that this component is exactly the
architecture we built in the previous section.

Activate
° Activate Activate &————— g Activate Activate ®
Real Red o]
Activate h Redl
Rea
constl : GenReal const2 : GenReal ? Rea ‘ ‘ Red &———— e Daa
@ Activate Activate
Daa & Real mul : MulReal out : DataOutput
Real Redl
in: Datalnput
A Real ‘ ‘ Rt §
add : AddReal

Figure 9: Temperature conversion dataflow: complete architecture

We can express this declaratively in Scope:

(composite TempConverter
(inner GenReal constl)
(inner GenReal const2)
(inner AddReal add)
(inner MulReal mul)

(connection constl add Number)
(connection const2 mul Number)
(connection add mul Number)
(connection constl const2 Activate))

The inner keyword introduces an inner component, de-
signed by its definition name'® and an identifier. For exam-
ple, const? is an inner component as defined in GenReal. We
can also declare the way the inner components are intercon-
nected in the composite.

The resulting input types of the composite component
are Activate (unsatisfied in constl) and Real (unsatisfied in
add). The unsatisfied output types are also Activate and
Real. Before using the composite, the constant generators
must be initialized. We can do this by adding an initializer
to the composite itself:

(composite TempConverter

(initialize ()

(constl ’initialize -32)

(const2 ’initialize (/ 5.0 9.0)))
)

As we can see, the inner components are directly acces-
sible through their identifiers from the composite code. Fi-
nally, we can create an instance of TempConverter and then
connect it to a couple of data input and output components:

(define convert (make-component 'TempConverter))
(connect-infer in convert) ==> (Real Activate)
(connect convert out 'Number) ==> (Real)

(convert ’initialize)
(in "activate)

? 68

20

From the outside world, the resulting architecture looks
like figure 10. The details concerning the constitution of the
TempConverter component is of no importance at this level.

1 L .
5This inner component can be of course a flat or composite
component.

Activate

o Activae | | Activate Activate Activae ®
Real
Data Red Redl Red Data
in: Datal nput out : DataOutput

convert : TempConverter

Figure 10: Temperature conversion dataflow up-
dated with a composite

5.5 Type confinement

We introduced the type Temperature in the previous sec-
tion but we did not use it in our dataflow. The problem is
that the operators are “too” generic, they work on real num-
bers. One way to specialize the converter is to use the type
confinement constructs: confined and filtered. The first one
hides an input type from the outside world while the second
one hides an output type.

To explain that our temperature converter composite can
only manage Temperature events, we simply have to confine
and filter the Real types and add the code to handle the
temperatures. This implies the following modifications to
the composite definition:

(composite TempConverter

(receive Temperature)
(send Temperature)
(confined Real)
(filtered Real)

(when Temperature (event)
(send-explicit add event))

(filter Real (in-event)

(let ((out-event (make-event 'Temperature)))
(out-event ’set-value! (in-event 'get-value))
(out-event ’set-unit! 'C)

(send out-event)))

)

The when clause, as usual, explains what to do when a
Temperature event is received by the composite. Here, the
event is forwarded to the inner architecture through the
send-explicit primitive. This event will be accepted as a
Real since we defined Temperature as one of its subtypes.

When an inner component generates a Real event, it is
intercepted at the composite level by the filter clause. The
filter here, when invoked, creates a Temperature and then
sends it as usual. Finally, we obtain the component depicted

in figure 11, that is, a real temperature converter when seen
from the outside world.

While transtyping is one possible use of the type confine-
ment mechanism, other purposes can be envisaged such as
true confinement, conflicting input types resolution'” and so
on.

® Activate Activate ®

® Temperature Temperature ®

convert : TempConverter

Figure 11: Confined and filtered composite

5.6 Labelled connections

Sometimes, a conceptual description of a component is not
enough. Suppose for example that we want to implement a
subtraction and a division component. The main problem
here is that these operators are not commutative, like addi-
tions or multiplications. We need a way to differentiate the
left part from the right part of these operations.

To that effect, the Scope language allows connections to
be labelled. A label is a symbol declared in a when clause,
as in the following (partial) definition:

(component SubReal
(receive Real)
(send Real)

(property readonly opl)

(when Real left (event)

(when Real right (event)

In order to connect a component (for example, a Dataln-
put) to a SubReal, the chosen label must be indicated:

(connect in sub "Number ’left)
==> (Real)

We see such labelled connections as being a clean way
to model physical pins or ports when needed while keeping
the more logical type-based descriptions of components. We
also investigate control-based connection guards but this is
beyond the scope of this paper.

5.7 Component refinement

We think that the component model we implement in
Scope is powerful enough to help in many situations to re-
duce source code redundancy and foster reuse. For exam-
ple, the dataflow components are very generic and so can

1 . . .
"A conflict may occur when a received event can be dis-
patched to more than one inner component.

be reused in many different contexts. However, when we
look more deeply at the level of the implementation, we
can see that the code redundancy situation is not optimal.
For example, the only difference between the addition and
multiplication operators on numbers is the low level opera-
tor involved. Using the refinement framework proposed in
the Scope language, we can define these components more
cleanly.
First, let’s define an abstract operator component:

(component OpReal
(receive Real)
(send Real)

(property readonly opl)
(function-abstract private operator (ol o0l1))

(when Real (event)
(if (eq? opl 'null)
(set! opl (event 'get-value))
(let ((sev (make-event 'Real)))
(sev 'set-value! (operator opl (event 'get-value)))
(set! opl 'null)

(send sev)))))

Note the variant function-abstract which allows the dec-
laration of an undefined function. Now, we can refine this
definition to describe the addition operator:

(component AddReal
(refine OpReal)
(refine-function private operator (0l ol))
(+ ol 02))

The definition of AddReal is exactly the definition of OpReal
with the refinement of the local function operator. In the
same manner, we can define a multiplication operator:

(component MulReal
(refine OpReal)
(refine-function private operator (0l ol1))
(* ol 02))

While it resemble inheritance of object-oriented languages,
it is very important to note that the refinement framework
introduced here has nothing to do with the type system:
refinement is not subtyping in Scope.

The refinement framework is only an implementation tool.
For example, while multiple-inheritance semantics is gener-
ally considered as a major and unresolved issue in mod-
ern object-oriented languages, the refinement of multiple
Scope component definitions is allowed and properly defined.
When a conflict occurs between multiple refined definitions,
the refinement process simply fails which means that sharing
source code in this case is not possible.

6. RELATED WORK

Our whole approach is primarily inspired by the software
architecture field of research. Mary Shaw and David Garlan
identify in [2] “an architecture of a specific system as a col-
lection of computational components - or simply components
- together with a description of the interactions between the
components - the connectors”. This implies a very generic
and conceptual nature for the concept of component. While
our component model follows these principles, the Scope
connections are largely different from connectors as found

in Architecture Definition Languages such as [12]. In our
approach, connections have a very fine-grained and opera-
tional nature. While complex interactions generally involve
complex connectors in ADLs, they will imply complex con-
nection compositions in Scope. This difference was mainly
motivated by the dynamic nature of the software architec-
tures we are working on.

Typed composition models, comparable to our approach,
have been introduced in previous research work. The Rapide
framework [6] also introduces composable typed components
for the prototyping of concurrent architectures. As in our
work, Rapide components are communicating to each other
using typed events, showing both the usefulness and gener-
ality of this approach. However, Rapide does not introduce
composite components or dynamic composition.

To our knowledge, few research work propose compos-
ite components models and recursive composition. Perhaps
the most resembling approach is Fabrik [4] which proposes a
composition model similar to ours. In both approaches, ar-
chitectures can be reused as regular components. Dynamic
composition is also allowed in Fabrik but the type system
does not allow subtyping. Moreover, we do not address
specifically the domain of visual programming, hence our
linguistic point of view.

7. CONCLUSION

We proposed in this paper a cleanly formalized composi-
tion model, supported by a language-level implementation.
While our main focus is the (flat and recursive) composition
of dynamic software architectures, we think the Scope model
is also useful at a more abstract and conceptual level, when
designing and prototyping component-based systems.

As a matter of fact, the recursive composition model is
in our opinion a real advance, providing at the same time
a powerful modelling and abstraction tool, supported by an
efficient implementation where flat and composite compo-
nents are not distinguished.

Our dataflow examples, while interesting, were mainly
employed for pedagogical purposes. We are working on more
concrete examples which foster the incremental design model
encouraged in Scope. For example, we investigate the de-
sign of workflow management systems which would allow
different runtime reconfigurations : adjunction of new busi-
ness processes or process components and so on. We also
work on Multi-Agent Systems where agent or group adjunc-
tion/removal are canonical functionalities. Moreover, we in-
vestigated in [3] the modelling of agents as composites. This
way, we may also modify the behaviour of specific agents.

The Scope language is based on a Lisp dialect called Scheme.

While not being the most used language in the industry!®,
Scheme is in our opinion a powerful glue language as well as
an invaluable environment for linguistic experiments, edu-
cation and even more generally for all-purpose software pro-
totyping. In our case, we were for example able to cleanly
separate the structural and behavioural issues and in fact
remain focused on the first ones while delegating the second
to the underlying Scheme semantics.

Together with the flat and recursive composition models,
the added properties (such as local functions, properties and

8However, Scheme has had some impact in the domain of
structured documentation, as the underlying language of
DSSSL.

initializers) and the language extensions, we think the Scope
language foster reuse and reduce source code redundancy,
perhaps in a more effective way than regular object-oriented
languages.

However, our approach can be considered as complemen-
tary to object-oriented environments. To demonstrate this,
we propose in [9] an alternative implementation, smoothly
integrated in the Java environment. This approach shows
that regular classes can be seen as a good implementation
tool for flat components. Composite components, however,
are more difficult to embed in class-based languages (due to
their non-recursive nature).

8. REFERENCES

[1] International Symposium on Principles of Software
Evolution (ISPSE 2000), Kanazawa, Japan. IEEE
computer society, November 2000.

[2] D. Garlan and M. Shaw. An Introduction to Software
Architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge
Engineering, volume I. World Scientific Publishing
Company, 1993.

[3] A. Guillemet, G. Haik, T. Meurisse, J.-P. Briot, and
M. Lhuillier. Mise en ceuvre d’une approche
componentielle pour la conception d’agents. In
Ingénierie des systémes multi-agents, JFIADSMA’99.
Editions Hermes, 1999.

[4] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and
K. Doyle. Fabrik, a visual programming environment.
In Proceedings of OOPSLA’88. ACM Press, November
1988.

[5] R. Kelsey, W. Clinger, and J. Rees. Revised® report
on the algorithmic language scheme. Technical report,
February 1998.

[6] D. C. Luckham. Rapide : A Language and Toolset for
Simulation of Distributed Systems by Partial
Orderings of Events. DIMACS Partial Order Methods
Workshop, IV, July 1996.

[7] B. Meyer. Object-Oriented Software Construction,
Second Edition. Prentice-Hall, Englewood Cliffs (NJ),
USA, 1997.

[8] Object Management Group. Corba CCM specification
(draft). http://www.omg.org, 1999.

[9] F. Peschanski. Comet : A component-based reflective
architecture for concurrent and distributed
programming. In OOPSLA’99 Workshop on Reflection
and Software Engineering, 1999.

[10] C. Queinnec. Designing meroon v3. In J. Kopp,
H. Hohl, and H. Bretthauer, editors, Proceedings of
the ECOOP’93 Workshop on Object-Oriented
Programming in Lisp: Languages and Applications,
September 1993.

[11] Sun Microsystems. JavaBeans 1.01 specification.
http://java.sun.com/beans, 1998.

[12] G. Zelesnik. The unicon language reference manual.
Technical report, Carnegie Mellon University, 1996.

