A Concurrent and Distributed Extension of Scheme

) Christian Queinnec*
Ecole Polytechnique & INRIA-Rocquencourt

Parallel Architectures and Languages Europe, PARLE 92, jun 92,
Paris (France), LNCS 605, Springer-Verlag, pp 431-446.

Abstract

The Lisp family of languages has traditionally been a privileged domain where linguistic experiments
were done, this paper presents a new dialect offering concurrency and distribution. This dialect, nick-
named CD-Scheme, has been designed above Scheme with as few as possible features to allow a great
expressiveness but still to retain the original consistency and simplicity of Scheme. We explicitly show
how common parallel constructs can be written in regular CD-Scheme.

A denotational semantics is also presented that expresses the detailed meaning of assignment, data
mutation, continuations in presence of concurrency and distribution. This semantics offers a basis to
understand new proposals of concurrent or distributed features and may be used to justify compiler
optimizations or implementation techniques. The proposed set of features of CD-Scheme can be also
used to extend languages other than Scheme.

CD-Scheme is a concurrent, distributed and conservative extension of Scheme, a dialect of Lisp [CR91]
which is a strict sequential untyped language enriching A-calculus with assignment, mutable data structures
and first-class continuations. The design of CD-Scheme has been driven by two rules: (i) the computational
model must be simple (ii) the language must be expressive.

CD-Scheme offers the illusion of a global data-space. This globally accessible but physically distributed
data-space respects the single (and simple) workspace tradition (and semantics) of Lisp. CD-Scheme does
not favor particular architectures such as shared memory but has been designed to provide an easy language
to write programs that run on loosely coupled machines.

According to the philosophy of Scheme, we only introduced the minimal number of new features to deal
with concurrency and distribution. To add a small amount of features allows to understand more thoroughly
their impact on the base language, their interaction, as well as it simplifies the learning effort of future users.
We also think that a few essential features unrestrictively combinable are a more challenging implementation
goal. The following features were added to Scheme:

1. assignment (the set! special form) atomically exchanges old and new values
2. the breed function controls concurrency

3. distribution (process and data migration) is achieved by the remote function
4. groups of tasks can be created and imperatively paused or awaked.

Scheme is an undeterministic language and so is its extension: CD-Scheme. To implement such a lan-
guage, or simply, to master its undeterminacy, a precise semantics must be given. The paper presents a
denotational semantics that specify both concurrency and distribution.

Numerous features such as futures [Hal84], queue-based functions [GM84], active objects [AR89], M-
structures [BNA91] etc. have been proposed to ease concurrent programming. CD-Scheme allows to program
them all as well as variants [KW90]. More traditional constructs such as busy waiting loops or semaphores

*Postal Address: Laboratoire d’'Informatique de I'Eeole Polytechnique (URA 1432), 91128 Palaiseau Cedex, France. Email
Address: queinnec@poly.polytechnique.fr. This work has been partially funded by Greco de Programmation.

can also be programmed thus conferring to CD-Scheme surprising capabilities with respect to its very small
number of features.

The main contributions of the paper are: (i) a definition of a mostly functional, very simple but
expressive language, (i7)an analysis of continuations in a concurrent setting, (%ii)a denotational semantics
where concurrency and distribution are explicitly expressed.

The rest of the paper is structured as follows: section 1 describes the features added to Scheme to define
CD-Scheme. Section 2 discusses some implementation points showing that CD-Scheme is not an unreasonable
language. The denotational semantics is presented in section 3. Examples of programs in CD-Scheme appear
in section 4. A comparison with related works and a conclusion follow.

1 CD-Scheme definition

CD-Scheme is grounded on Scheme [CR91]. Scheme is a strict sequential untyped language with assignment,
mutable data and first-class continuations. Its very clean and simple semantics makes Scheme easy to
extend and allows to appreciate the impact of the extensions. This section focuses only on the new features
of CD-Scheme, significative examples appear in section 4.

We decide to keep the Scheme basis intact and to not forbid assignment nor data mutation as in pure
functional programming. Existing hardware, libraries and operating systems require side-effects to be op-
erated. CD-Scheme is therefore a “mostly functional programming language” where side-effects exist to be
appropriately encapsulated, offering undeterminacy where needed. Following the tradition of the Lisp family,
side-effects are also useful to express the details of the implementation of CD-Scheme in CD-Scheme itself
and thus confers to CD-Scheme reflective capabilities that make it easy to extend.

1.1 Concurrency

Concurrency is introduced by means of the breed function. Programs that do not use breed keep their
regular semantics: CD-Scheme is therefore a conservative extension to Scheme. Some analyses have been
reported, [Hal89], that automatically find places where concurrency might be usefully introduced. As in
regular Lisp systems, macros can be designed that annotate programs with appropriate calls to breed.
The breed function is a low-level but powerful facility that can be used (see §4) to define more elaborate
constructs such as pcall [Hal84] or glambda [GM84]. The breed function takes some thunks as arguments,
creates independent processes to invoke them with a suicide continuation. When these processes are created,
the process invoking breed suicides itself. The suicide function is therefore definable in term of breed as:

(define (suicide . arguments) (breed))

The effect of breed is to create and detach processes. The different processes are independent, they have
no synchronization constraint. They can return information through continuation as discussed in the next
section.

CD-Scheme does not enforce a particular scheduling strategy. Therefore breed is not even compelled to
create new processes and may be implemented, in regular Scheme, with a continuation-based scheduler as
in [Wan80]. The breed function introduces undeterminacy which is already present (but to a lesser extent)
in Scheme since the evaluation order of the terms of a functional application is unspecified.

1.2 Continuations

Continuations are first-class objects in Scheme. They are created (captured) by means of the call/cc
function. Scheme continuations have an indefinite extent which confers them numerous usages from escape
constructs such as catch/throw ¢ la CoMMON LIsP, to coroutines [HFW84].

A continuation can be multiply invoked in Scheme. A continuation can also be concurrently invoked
since CD-Scheme is a concurrent language. When a process invokes a continuation, this has no effect on the
other processes that may share this continuation. Consider for instance the following generator in the spirit
of [MH90]:

(define (//iota start stop)

(call/cc (lambda (return)
(define (iota start stop)
(if (< start stop)
; 3 concurrently return a number and continue to generate the others
(breed (lambda () (return start))
(lambda () (iota (+ 1 start) stop)))

(suicide)))

(iota start stop))))

A process that invokes (//iota 0 4) is killed while 4 new processes are sequentially created, each of them
appear to return 0, 1, 2 or 3 as the value of the (//iota 0 4) form. For instance (display (//iota 0 4))
prints in some undetermined order the integers 0, 1, 2 and 3.

1.3 Atomic exchange

In regular Scheme, the value returned by an assignment is unspecified, we choose to return the former value
of the binding. The form (set! name ezxpression) first computes the value of expression then atomically
exchanges this value with the content of the location bound to name and returns the latter. The value
returned by the first assignment on a variable is still unspecified. This exchange effect can be used as a
test-and-set instruction to program a busy-waiting loop as in §4.

1.4 Migration

Computations can migrate by means of the remote function which implements a kind of remote procedure
call (RPC) [SG90]. When a form such as (remote F' A B) is to be evaluated, F', A and B are sequentially
evaluated yielding values f, a and b. These values are then possibly migrated on a processor of the neighbor-
hood (the precise choice is left unspecified) where the migrated f is applied on the migrated a and b. The
difference with a regular RPC is that the continuation k of the original (remote ...) form is also migrated
and will be directly resumed, from the neighbor, with the result of the application.

We decide to stick to a very simple “migration” model where entities never move and always reside on
the site where they were created. When an entity o on processor u is to be migrated to the processor y', a
remote pointer < u,o > is created on the remote processor u’. This remote pointer can be read as “go to
u and find o”. Extra rules can be added to simplify remote remote pointers, for example on machine ",
< p',< p,0>>is no more than < u, o0 > if processor y is accessible from p’.

An effective implementation of this theoretical migration model does not exclude the “real” migration
of entities provided the respect of the semantics, nor it excludes to multiply duplicate immutable entities
such as small integers, booleans, characters, immutable cons cells; functions codes or universally known
primitives like + or cons. To achieve this, the mutability of all user-created data can be taken into account
and specialized migration policy can be devised. Fortunately, the percentage of mutable data is usually
small.

Some primitives are geographically strict. They impose, to be applied, that their argument are local and
not remote. Such strict computations are handled through the following rule:

geographical commutation rule: Applying the geographically strict primitive p on < g, 0 > with con-
tinuation k on processor p is just applying p on o with continuation < p,k > on processor p'.

Examples of strict computations include looking up an identifier in a remote environment (activation

record), sending a value to a remote continuation, storing a value in a remote mutable object ... Almost
all CD-Scheme primitive computations follow this rule except binary comparison primitives such as eq?,
eqv? ... which need a special implementation when comparing two remote entities coming from different

directions. Observe that computations carry their continuation and therefore are not bound to the sites
through which they pass. To migrate computations towards data is not unreasonable, especially when data
are files or other site-bound resources, but does not exclude to move some objects to lessen communication
cost.

1.5 Controlling groups of tasks

Tasks can be easily created by means of breed but not enough control is offered to program the classical

parallel-or operator, also known as either [Pri80]. The form (either ezpressiony ezpression;) concurrently

creates two processes to evaluate the two expressions, returns the value of the first one which returns true

and kills the other process since it is no more useful. We introduced the concept of group, inspired from the

sponsor of [Osb90] and controller of [HDB90] but also related to the UNIX!’s concept of groups of tasks.
The sponsor function starts a computation under the responsibility of a group:

(sponsor (lambda (group) expression))

This form creates an object called a group, binds it to the variable group and evaluates expression under
its control. All tasks that will be created when evaluating ezpression will belong to this group. Tasks may
belong to more than one group since groups can be embedded.

A group can pause or awake the tasks it controls by means of the associated functions pause! and
awake!. Pausing a group means that all the tasks that belong to this group will be suspended wherever
they geographically are and how many they are. Conversely all the tasks of a group can be resumed when
wakening the group. The group object itself can be inspected, through the predicate paused?, to determine
if it is paused or awaked. Another predicate, in-group? tells if the current computation participates to a
particular group or not.

A key point is that groups are first-class objects while processes are not. A computation can be controlled
as a whole. Processes are behind-the-scene entities that cannot be captured. Continuations are not processes:
a continuation is a return point in a dynamic chain of callers. A process can be suspended by taking its
continuation and not invoking it; it can be resumed as soon as its associated continuation is invoked. Moreover
a same continuation can be invoked by two different processes.

1.6 Linguistic conclusions

To sum up, CD-Scheme only adds to Scheme the refined behavior of continuations and assignment, as well
as a bunch of primitive functions: breed, remote, sponsor, pause!, awake!, paused? and in-group?.
CD-Scheme 1s a conservative extension of Scheme which concepts can be unrestrictively combined. It is
therefore an easy to learn and powerful language.

2 Implementation hints

CD-Scheme does not require sophisticated techniques to be naively implemented. Of course, this does not
achieve speed for which more clever compile-time and run-time techniques are required. This section only
presents naive techniques and some hints on more elaborate techniques which we are currently investigating.

Continuations are heap-based rather than stack-based i.e.they aare represented by linked frames allocated
in the heap. Such explicit continuations are easy to migrate since their representation is explicit. Migration
of immutable objects is a simple copy. Mutable objects are not copied and never move, only remote pointers
are created. All accessor (reader or writer) functions are generic: when the object is local, the appropriate
action is performed otherwise a geographical commutation is initiated. Assignments can be turned into
mutation of activation records via the box transformation of [KKR*86].

A more aggressive technique we plan to use is to copy objects whether mutable or not in order to improve
data reading. For each mutable object exists a master copy which is the sole instance to be mutated, its site
ensures the serialization of mutations. Whenever a master copy is mutated, a message is broadcasted from
the master site to invalidate all copies [Piq91].

Multiprocessing is controlled by a non preemptive scheduler. Periodically on each processor and after a
fixed number of invocations, the local scheduler is invoked and a new process is selected. A process object
contains all the informations needed to resume the process and, in particular, the list of groups controlling
it. When a group of tasks is paused (resp. awaked), a pausing (resp. awakening) order is broadcasted, from
the site where the group was created, to suspend (resp. resume) all processes belonging to that group. When
the broadcast is fully acknowledged, the pause! or awake! function returns.

1UNIX is a registered trademark of Novell.

£ :Prog — Env x Cont — Step 7 € Prog = {The set of programs}

p€ Env=Id — Addr v € Id = {The set of identifiers}

a € Addr = Loc x Mach 1 € Loc = {The set of locations}

p € Mach = {The set of machines} k € Cont = Val — Step

¢ € Val = Group + Fun + Int + ... | ¥ € Group = Addr

¢ € Fun = Val* x Cont — Step 1 € Step = Group® — Mach x State — Ans
¢ € State = Mach — Local x € Local = Thread* x Store

€ Thread = Group® x Step o € Store = Loc — Val

Figure 1: Domains of CD-Scheme

For Garbage Collection, a solution inspired from [LQP92] can be adapted. This distributed, concurrent
and fault-tolerant GC allows to dynamically add new processors to the machine.

3 Denotational Semantics

To cope with concurrency is difficult both at the user level and at the implementer level. For instance, what
is the semantics of side-effects?, to what group of tasks belongs a particular continuation created under one
group and applied under another? An answer to these questions is to exhibit a denotational semantics of
CD-Scheme. This semantics has to express both the concurrency and the migration of computations. We
choose to model concurrency by means of resumptions. Addresses are represented by a pair of a machine (a
processor) and a location in its own store. The domains of the denotation appears in figure 1.

Computations are broken into atomic steps, called resumptions, belonging to Step. In order to define
pause! or awake!, computations steps must be inquired for the list of groups controlling them. We thus
pair computation steps with lists of groups in domain Thread. The state of the computation is represented
by State which maps machines to their Local state: a store and a list of threads that might be run.

The denotation of a reference to a variable takes, as all denotations, an environment p and a continuation
Kk, is invoked under the sponsorship of some groups 4* and finally runs on a machine g within the global
state (. It simply adjoins to the list of eligible threads of machine p, a new thread < y*, k(fetch(¢, p1, 1)) >
that will run later, under the same sponsorship, will fetch the content of the address e =< [, 3 > associated
to the variable v in the lexical environment p i.e.the content of the location / on machine y;, and will return
it to the original continuation k.

Elv] = Apr. Ay Mu. let a=p(r)in let | =« | and p; =« |

in adjoin(C, p, < v*, k(fetch(¢, p1,1)) > inThread)
feteh(C,p,)=C(p) | (1) ‘
adjoin(C, 1,0) = compute((lu —< 0: ()| ()| > inLoeall)

The alternative has a regular definition similar to its usual denotation [CRI1]:

E[Gf 7m m)] =
Apr.Ay" ACu. let k1 = Ae Ay AGu. if & then £[m] else £[ms] endif (p, k)(v"1)(Crs 1)
in E[7](p, k1)(v*),)

The assignment computes a value € and updates the location associated to the variable v. Observe that
the new ¢ and the former ¢; values of the location are atomically swapped and the old value is sent back
to the continuation. The update function takes care of updating the store of the appropriate machine where
resides the location.

E[(set! vm)]=
Apr. AV Al p.
let kK1 = Ae AMy* 1 AGp. let a = p(v)
in let /=« and p2 = «|
in let e; = fetch(Cq, p2, {) and (2 = update({q, pa, ,€)

in adjoin((a, p1, < ¥*1, k(e1) > inThread)

in E[](p, k1)(v*)((, 1)
update(C, p, le) = let x =((p) in ([u —< x | o x| [l — €] > inLocal]

Functions are created with Lambda. We ignore functions with a variable arity. The new-locations function
is implementation dependent and, given a state and a machine, just allocates some fresh locations on this
machine.

E[(lambda v* 7)] =
Apr AV A, let ¢ = Ae* k1. A" . AG .
let a* = new-locations((1, p1, #v*)
in let I* = map(loo| ,a*)
in E[r](plv* = o*], k1)(v*) (update* (C1, pr, 1%, €%), 1)
in adjoin({, p, < v*,k(¢) > inThread)
update® (¢, p, ¥, e*) =
if #0* >0 then 1if #¢* > 0 then update®(update(C, p, ¥ |1,¢* 1), 1, ¥ 7 1,e* 1 1)
else wrong(“Too few images”, (*) endif
else if #c* > 0 then wrong(“Too much points”,¢*) else ¢ endif endif
plz — y] = Az. if z = z then y else ¢(z) endif
olz* 5 y*¥] = if #2* > 0 then if #y* > 0 then ¢[z* |1— y* [1][z* 11 5 y* 1 1]
else wrong(“Too few images”,z*) endif
else if #y* > 0 then wrong(“Too much points”, y*) else ¢ endif endif

The denotation of an application evaluates sequentially the terms (from left to right here) then applies the
first value on the others. The auxiliary valuation function £* returns the denotations of a list of programs.

El(r 79)] =
ApR.AY* A, let kK1 = A Ay™ . AC1 .
let k1 = Ae* . Ay*,. A apa.adjoin(Ca, pa, < ¥*4, ¢(e*, k) > inThread)
in & [7*](p, k1)(v"1)(C1, 1)
in E[x](p, k1)(v*)(C, 1)
X = Apr. Ay ACp.£(<>) (v)(C, 1)
EX[m 7] =
Ap. Ay Alp. let k1 = Ae. Ay Al
let k1 = Ae* Ay 5. Aaps. adjoin(Ca, o, < ¥*5, k(€ : €*) > inThread)
in £ [7*](p, k1) (7" 1)(C, p1a)
in E[](p, k1)(7")(C, 1)

This finishes the special forms of Scheme and CD-Scheme. Among the initial environment are some prim-
itive functions dealing with continuations, concurrency and distribution, call/cc is the first one. Observe
that a continuation is invoked under the sponsorship of the groups of the invoker rather than the groups of
its creator.

E[call/cc] =
Ae* KAV M. let ¢ = Ae* 1k Ay | AG pa-adjoin((, p, < ¥*q, k(%1 |1) > inThread)
in adjoin({, pu, < v*,e* |1 (< ¢ >, k) > inThread)

The remote function selects a machine towards which are migrated the terms of the application to
remotely perform. Observe that the current machine can be selected, this proves to be useful in case there is
only one machine. All-machinesis the list of all available machines and is considered as constant throughout
the denotation.

Eremote] =
Ae* k. Ay* A p.oneof (All-machines
JApp*. let kK1 = Ae Ay | AG e adjoin(Ca, i, < 4* 4, k(€) > inThread)
in adjoin(¢, p1, < v*,e* 1 (¢* 11, k1) > inThread))

The breed function adjoins multiple threads to the list of possible threads of the current machine.

Ebreed] =
Ae* R Ay M. let kK1 = Ae Ay A pr.compute((y)

in adjoin*(¢, u, map(Ae. < v*,e(<>, k1) > inThread,c*))
adjoin*(¢, u, 0*) = compute(¢[p —< 0*§¢() | «, C(p) | > inLocal])

The sponsor function creates a new group and runs its argument under an enriched sponsorhsip. The
group is associated to a location which will hold the list of suspended tasks in case the group is paused.

E[sponsor] =
Ae* KAy M u. let o = new-location((, p)
in let y =< a > inGroup
in adjoin(update((, py e | ,7y), 1, <7y :7%,e* |1 (<4 >,k) > inThread)

The awake! function adjoins to the list of eligible threads, all the threads that are in the location
associated to the specified group.

E[awake!] = Ac* k. Ay*.Ap.
let a =¢* ||
in adjoin(update(reduce(A(1¥. let py =¥ |, and 6* =¥ 71
in Gl —< 0§ (m) | +,Giu) | > inLocal]
,C, feteh(¢, o | cal), o ya |, <>), 1, < y*, k(" |1) > inThread)
reduce(¢,v,v*) = if #v* > 0 then ¢(reduce(¢,v,v* 1 1),v* |1) else v endif

The pause! function is more complex, it has to scan the entire set of machines to remove all eligible
threads belonging to the specified group and store them in the location associated to the group so that they
can be later resumed.

Epause!] = Ae*k.Ay*.Ap.
let « = &* |4]

in compute(reduce(Alyp1.s0mt((1 (1) | &% |
,A0* 0% update(Cr[pr —< 0%1,(1(p1) | > inLocal],a| o
J(py 2 0%) feteh(Cr,a | s), ([—< <", k(" |1) > inThread : ((u) | .

,C(u) | > inLocal], All-machines))
sort(6*,y,¢) = if #6* >0
then if y € 60" |4] = then sort(6* T 1,9, A0*160%2.0(6% |1 : 0%1,0%2))
else sort(0* 11,7, A0*10%2.0(0%1,6* |1 : 0*2)) endif
else p(<>,<>) endif

The various semantical components have to be initialized with precise values:

Cz’m’t(#) =<<>,04nit > tnLocal
oinit(l) = wrong(“No such location”,l)
pinit(V) = wrong(“No such identifier” v)

It only remains to explain the “scheduling” part of the denotation. Observe that we used the oneof
operator that had a quite easy interpretation for the implementers. Whenever oneof is applied on a list of
objects, it selects one, removes this one from the original set of objects and calls the second argument on these
two things. The oneof operator is for example used to select the thread to evaluate or the machine towards
which computation must be migrated. This simple interpretation is not denotational since it introduces
undeterminacy in a realm where determinism must prevail. We took care of writing oneof in terminal
position so that we can define it, not to return one of the possible results, but the list of all possible results.
Since results are defined as the list of values that are sequentially returned to the initial continuation, final
answers (see the Ans domain) are lists of lists of values.

The oneof operator is therefore defined as:

oneof (V*,) = if #v* > 0 then ¢(v* |1, v* { D§oneof (v* T 1, Avv*1.(v, v* |1 1 v*1))
else <> endif

Starting from a state (, the answer associated to a program is computed with compute and run:

compute(() = run((, All-machines)

run((, p*) =
if #p* >0
then oneof (p*, App*;. let 0* = ((u) | - and o = ((p) |
in if #0* >0
then oneof (6%, 200*,. let v* =0 | .

and ¥ =@ |
in ¢(y*)({[p —< 0*1,0 > inLocal], u))
else run(¢, p*,) endif)
else <> endif

4 Examples

Despite its simplicity, CD-Scheme has surprising capabilities and can be used to describe other proposals for
concurrent programming. The following examples are mainly syntaxes and are defined with old-styled but
hygienic macros?.

The first example is a busy waiting loop in the spirit of [Per87, §3.4].

(define-macro (with-mutex bool . critical-section)
‘(let ((local #t)) ; occupied
; s exchanges local and bool and loops until bool is free
(while local (set! local (set! ,bool local)))
;s evaluates the critical section
(let ((result (begin . ,critical-section)))
(unless (set! local #t) (set! ,bool #£f)) ;frees bool
result)))

This syntactic form ensures that only one process will evaluate the critical-section expression. The
mutual exclusion is ensured by the atomic control of the bool variable?.

The once syntax imposes that an expression cannot return more than one value. The trick is to pause
the group of processes which computes the expression as soon as it returns a first value. The paused group
will be automatically reclaimed since unreferenced.

(define-macro (once . program)
‘(let ((result? #f)) ; 15 the result present ?
(let ((g+v (sponsor (lambda (g)
(let ((value (begin . ,program)))
(if (set! result? #t)

(suicide) ; kills superfluous values
(cons g value)))))))
(pause! (car g+v)) ; kills other spawned processes

(cdr g+v))))

An effect similar to the qlambda feature of Qlisp [GM84, GG88] or the exlambda of PaiLisp [IM89], is
to define a function which body is in a critical section. The function is associated to a queue of processes
waiting to enter the body of the function. Processes are reified into continuations that will be resumed when
the critical section is free. Observe that busy-waiting loops are only used for short mutations of shared

?We do not use the new macro proposal in the appendix of [CR91] since the pcall syntax does not seem easily amenable to
this model. We nevertheless suppose our macros to be hygienic [KFFD86] i.e. not to introduce name conflicts.

3The (unless (set! local #t) ...) form protects bool from being freed more than once when critical-section returns
more than one value but does not prevent these extra computations to take place.

variables thus ensuring unexpensive waits. The expression defining barrier acts as the ‘P’ primitive on
bool, considered as a semaphore, whereas the second argument of breed mimics the ‘V’ primitive. Waiting
processes are resumed in a FIFO order, other strategies can be devised.

(define-macro (exlambda variables . body)

‘(let ((bool #f) ; controls body entrance
(queue-flag #f) ; controls the queue shared variable
(queue ()) ; list of watting processes

(lambda ,variables
(let* ((barrier (if (set! bool #t)
(call/cc (lambda (go) ;suspends caller
(with-mutex queue-flag
(set! queue (cons go queue)))
(suicide)))
’go))
(result (once . ,body))) ; computes body
(call/cc
(lambda (return)
(breed (lambda () (return result))
(lambda () ((with-mutex queue-flag
(if (null? queue)
(begin (set! bool #f) suicide)
(let* ((end (last-pair queue))
(proc (car end))) ;FIFO mode
(set-cdr! end ’()) proc)))
’go-mow)))))))))

Many proposals for concurrency [Hal84] include a pcall (for parallel call) special form to introduce
concurrency. When a form such as (pcall F' A B) is to be evaluated, the different terms F'; A and B are
concurrently evaluated by different processes yielding values f, @ and b. When all values are computed, f
(presumably a function) is applied on a and b. This is an instance of a classical fork-join model.

The continuation of a term of a pcall form is problematic due to the concurrency that exists between
the terms and the fact that these terms might multiply return results. At least two solutions seem to be
natural. Without restraining the problem, let us only consider the two-term combination (pcall F' E).
The first meaning is nicknamed “multiplicative” where all values of F' are applied on all values of . This
imposes to keep all values in every pcall form since to multiply return results is a dynamic (and generally
unforeseeable) property. The second meaning is “additive”, the continuation of E is a function that waits for
a value e: when invoked the first time and if I" already returned some values f; then all these (presumably)
functions f; are applied on e. If F' has not returned any values, then e is memorized as a possible value for
E. When invoked later, the last value of F' is applied on e and e is memorized as the last value for . These
continuations are symmetrically defined and the number of effective applications is 1 4+ (np — 1) + (ng — 1)
where np (resp. ng) is the number of values returned by F' (resp. E). This behavior appears on figure 2
and is detailed in [Que91, Mor92].

CD-Scheme allows to program pcall with whatever semantics. The following example corresponds to
the additive semantics. The definition is lengthy since semantics of continuation of pcall terms are complex.

(define-macro (pcall . terms)
(let ((n (length terms)) (i -1))
‘(let ((handler (additive-pcall-handler ,n)))
(handler (call/cc
(lambda (send)
(breed ,Q@(map (lambda (term)

(set! i (+ i 1))
‘(lambda () (send (cons ,i ,term))))

terms))))))))

another value for E
keep it

some valuesfor E
keep al E

avauefor E

avaluefor F avaluefor F or
apply Fonall E avaluefor E
\P\\l apply last F on last E

avaluefor Eand F
keep last Eand F

No valuefor E and F
symetrical for F

Figure 2: Continuation of a term of a pcall form

(define additive-pcall-handler

(let ((not-yet-computed (list ’not-yet—computed))) ;sentinel
(lambda (n)

(letrec
((arguments (make-vector n not-yet—computed))
(extra-results ’()) ;extra results returned until ready?
(ready? #f) ;is arguments complete ?
(behavior

(exlambda (index+value return) ;ezclusive body
(let ((index (car index+value)) (value (cdr index+value)))
(cond
((eq? (vector-ref arguments index) not-yet-computed)
(vector-set! arguments index value)
(if (map-and (lambda (content) ;are all arguments there ?
(not (eq? content not-yet-computed)))
(vector->list arguments))
(let ((applications (list (vector->list arguments)))
(extra extra-results))
(set! ready? #t)
(set! extra-results ’())
(apply breed
(map (lambda (application)
(lambda ()
(return (apply (car applicatiomn)
(cdr application)))))
(reduce
(lambda (applications iv)
(vector-set! arguments (car iv) (cdr iv))
(cons (vector->list arguments)
applications))
applications
extra))))
(suicide)))
(ready?

10

(vector-set! arguments index value)
(let ((terms (vector->list arguments)))
(breed (lambda ()

(return (apply (car terms) (cdr terms)))))))
(else (set! extra (cons index+value extra))
(suicide)))))))

(lambda (index+value)
(call/cc (lambda (return) (behavior index+value return))))))))

The either syntax can also be defined. There again the group of tasks computing the two branches is

paused when a true result is produced. When the two expressions both return false, the final value of either
is false.

(define-syntax (either el e2)
‘(let ((abort? #f) ;when true means that result is set
(group ’wait) ;the group of tasks
(last #f) ;18 it the last process ¢

(result #f)) ;the default final result
(sponsor (lambda (g)

(set! group g)
(call/cc (lambda (return)
(define (handle v)
(when abort? (suicide))
(if v (unless (set! abort? #t)
(set! result v) (return ’true))
(when (set! last #t) (return ’false)))
(suicide))
(breed (lambda () (handle (once ,el)))

(lambda () (handle (once ,e2))))))))
(pause! group)

result))

The last example we give is related to the well-known future [Hal84, Hal89]. We can define it in regular

CD-Scheme without resorting to magic functions such as make-future or determine-future!. These futures
must be explicitly touch-ed to deliver their value.

(define (touch f) (f))
(define-macro (future e)
“(let ((computed? #f)

;18 the future determined ?
(queue-flag #f)

; controls queue and computed?

(queue () ; watting touching processes
(value ‘wait)) ;future’s value
(call/cc
(lambda (return)
(breed ; concurrently (1) and (2)
(lambda ()
(return ; (1) returns ...

(lambda () ;< the future
(call/cc (lambda (caller)
(if (with-mutex queue-flag
(or computed?

(begin (set! queue (cons caller queue))
#£)))
value (suicide)))))))
(lambda () i (2) computes the value of the future
(set! value ,e)

(if (with-mutex queue-flag (set! computed? #t))

11

(suicide) ; Variant: (return value)
(apply breed ;resumes processes in parallel
(map (lambda (caller) (lambda () (caller value)))
(with-mutex queue-flag
(let ((q queue)) (set! queue *()) q))))))
))))))

The difference between a future and a regular Scheme delay is that the computation of the future is done
concurrently with its use. This behavior raises subtle issues, detailed in [KW90], with different behaviors all
of which can directly be programmed in CD-Scheme.

Other features like M-structures [BNA91] or active objects [AR89] can be programmed in CD-Scheme
and are left as exercises to the careful reader. Of course, all the previous syntaxes can be combined into
higher-level abstractions since users often do not need to know the details of these macros.

5 Related and future work

The pioneer work of Halstead [Hal84] popularized the future concept in the MultiLisp project. Futures were
a priori believed to introduce more parallelism than pcall since they immediately return a place-holder that
can be handled but for its content. The evolution from MultiLisp to MultiScheme, where continuations have
an indefinite extent, makes future more problematic since they can be multiply determined [KW90].

CD-Scheme is simpler than MultiLisp, since we showed that futures can be explicitly written in regular
CD-Scheme thanks to breed and continuations. As futures are written in the language, so can variants
of futures [KW90]. On the other hand, CD-Scheme is actually only simulated on a distributed network of
workstations whereas MultiLisp is implemented on a shared memory architecture and benefits from very
clever compiling techniques [MKH90].

Concurrent Scheme [KS89] is an implementation of Scheme for distributed memories. They introduce
a future-like mechanism called make-thread. Mutual exclusion is handled through domains. No two
computations can be simultaneously performed in a same domain. Domains define disconnected data subsets:
no data sharing is possible between different domains. Data are thus copied before being passed from one
domain to another. Domains are therefore good candidates to be associated to processors.

Since domains and threads can be dynamically created, it seems difficult to control if data are shared or
copied. This precludes the use of deterministic side-effects and breaks the tradition of the single workspace
of Lisp. On another hand, CD-Scheme introduces less concepts than Concurrent Scheme.

A parallel abstract machine was proposed in [GL90] where an implicit remote facility was present.
Since their language is purely functional they do not handle assignment, nor data mutation, nor first-class
continuations that we have shown to be valuable tools. The current version of their machine only handles
booleans and small integers while we handle any kind of Lisp objects.

Qlisp offers some constructs, qlambda and catch, that can be simulated in CD-Scheme. The simulation
is not completely accurate since Qlisp is based on CoMMON Lisp, the difference being that continuations
have a dynamic extent in CoMMON LIsP rather than an indefinite extent as in Scheme. The work of [QS91]
reconciles the two worlds. A new implementation of CD-Scheme, currently under progress, merges the
splitter operator of [QS91] and the above sponsor facility.

PaiLisp [IM89] is a parallel extension of Scheme which kernel only comprises four primitives: spawn (to
create processes), suspend, exlambda (similar to Qlisp’s qlambda) and call/cc. The definition the authors
gave of Pailisp is through a metacircular interpreter using side-effects. The semantics of continuations is
extended to handle the concept of process. Pailisp’s call/cc has a process-killing or process-resuming effect
if the caller and the creator of a continuation are different: this allows to imperatively control individual
processes which are identified with their unique starting continuation. As in Pailisp, we tried hard to
reduce the number of non primitive features; similarly we altered the semantics of continuation in presence
of concurrency. On the other hand, we chose a different set of primitives offering the simple to learn and
useful concept of group of processes and having a non-metacircular semantics.

12

Hieb and Dybvig [HD90] propose a spawn primitive which allows to control process continuation i.e.tree-
structured continuations. Spawn and sponsor are very close in their effect on groups of tasks. Nevertheless
spawn associates a partial continuation to the group of tasks, something we think unrelated to the group
but only appropriate to a single process. The group object in CD-Scheme thus has more properties and can
be more tightly controlled, the current implementation of CD-Scheme allows to reify the continuation of a
process upto one of the groups to which it belongs in a manner reminiscent of [QS91].

Partial continuations offer the power of continuations created by call/cc but are respectful of the
dynamic extent concept. We therefore plan to abandon full continuations in favor of partial continuations.
The splitter operator of [QS91] can be identified to the above sponsor and allows to remove call/cc
from CD-Scheme and its questionable definition where the invocation of a continuation is done within the
groups of the caller rather than these of the creator. This weird behaviour does not arise if dynamic extent
is respected.

6 Conclusions

We presented a language, CD-Scheme, which offers simple concepts allied to a great expressiveness. Distri-
bution relies on a neighborhood topology and thus makes suitable to run programs on a large number of
processors. Lisp dialects are often used as extension languages, CD-Scheme is such an extension language.
We actually sacrifice speed (opposed to a non-concurrent, non distributed implementation of Scheme) to
easily program widely distributed algorithms in a mostly functional style. CD-Scheme is also a pedagogical
tool to describe concurrent features.

We realized an interpreted simulation of CD-Scheme showing that naively implemented migration and
geographical commutation have tremendous costs but do not preclude to obtain some speedup [Que91]. The
simulation also shows that, in the worst case, never moving objects is not unreasonable: some objects like
files do not naturally move and shared mutable objects are simpler to implement on a unique site. Objects
created on a variety of processors naturally load balance the work.

A real compiler is actually under progress associated to a distributed and concurrent GC along the lines
of [LQP92]. Thorough experimentations will be led and reported in the future.

Bibliography

[AR89] Pierre America and Jan Rutten. A parallel object-oriented language: design and semantic founda-
tions. In J W Bakker, editor, Languages for Parallel Architectures: Design, Semantics, Implementation
Models. Wiley, 1989.

[BNA91] Paul S Barth, Rishiyur S Nikhil, and Arvind. M-structures: Extending a parallel, non-strict, func-
tional language with state. In John Hughes, editor, FPCA 91 — Functional Programming and Computer
Architecture, volume Lecture Notes in Computer Science 523, pages 538-568, Cambridge (Mass. USA),
August 1991. Springer-Verlag.

[CRI1] William Clinger and Jonathan A Rees. The revised* report on the algorithmic language scheme. Lisp
Pointer, 4(3), 1991.

[GG88] Ron Goldman and Richard P. Gabriel. Preliminary results with the initial implementation of qlisp.
In LFP ’88 — ACM Symposium on Lisp and Functional Programming, pages 143-152, Snowbird (Utah
USA), 1988.

[GLI90] J F Giorgi and Daniel Le Métayer. Continuation-based parallel implementation of functional pro-
gramming languages. In LFP ’90 - ACM Symposium on Lisp and Functional Programming, pages 209-217,
Nice (France), June 1990.

[GM84] Richard P Gabriel and John McCarthy. Queue-based multi-processing lisp. In LFP 84 — ACM
Symposium on Lisp and Functional Programming, pages 9-17, Austin (Texas USA), 1984.

[Hal84] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In LFP 84 - ACM
Symposium on Lisp and Functional Programming, pages 9-17, Austin (Texas USA), 1984.

13

[Hal89] Robert H. Halstead, Jr. New ideas in parallel lisp: Language design, implementation, and program-
ming tools. In Robert H Halstead, Jr. and Takayasu Ito, editors, US-Japan Workshop on Parallel Lisp,
volume Lecture Notes in Computer Science 441, Sendai (Japan), June 1989. Springer-Verlag.

[HD90] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In PPOPP 90 - ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming, pages 128-136, Seattle (Washington US),
March 1990.

[HDB90] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of first-
class continuations. In Proceedings of the SIGPLAN ’90 Conference on Programming Language Design
and Implementation, pages 66-77, White Plains, New York, June 1990.

[HFW84] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and coroutines.
In Conference Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages 293-298,
Austin, TX., 1984.

[IM89] Takayasu Ito and Manabu Matsui. A parallel lisp language PaiLisp and its kernel specification. In
Takayasu Ito and Robert H Halstead, Jr., editors, Proceedings of the US/Japan Workshop on Parallel Lisp,
volume Lecture Notes in Computer Science 441, pages 58-100, Sendai (Japan), June 1989. Springer-Verlag.

[KFFD86] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro
expansion. Symposium on LISP and Functional Programming, pages 151-161, August 1986.

[KKR1*86] David Kranz, Richard Kelsey, Jonathan A. Rees, Paul Hudak, James Philbin, and Norman I.
Adams. Orbit: an optimizing compiler for scheme. In Proceedings of the SIGPLAN ’86 Symposium on
Compiler Construction, pages 219-233. ACM, June 1986.

[KS89] Robert R. Kessler and Mark R. Swanson. Concurrent scheme. In US-Japan Workshop on Parallel
Lisp, volume Lecture Notes in Computer Science 441, Sendai (Japan), June 1989. Springer-Verlag.

[KW90] Morry Katz and Daniel Weise. Continuing into the future: On the interaction of futures and first-
class continuations. In LFP 90 - ACM Symposium on Lisp and Functional Programming, pages 176-184,
Nice (France), 1990.

[LQPI2] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting the world. In POPL ’92 -
Nineteenth Annual ACM symposium on Principles of Programming Languages, pages 39-50, Albuquerque
(New Mexico, USA), January 1992.

[MH90] Thanasis Mitsolides and Malcolm Harrison. Generators and the replicator control structure in the
parallel environment of alloy. In PLDI ’90 -ACM SIGPLAN Programming Languages Design and Imple-
mentation, pages 189-196, White Plains (New-York USA), 1990.

[MKH90] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A technique for
increasing the granularity of parallel programs. In LFP 90 - ACM Symposium on Lisp and Functional
Programming, pages 185-198, Nice (France), 1990.

[Mor92] Luc Moreau. An operational semantics for a parallel functional language with continuations. In
D. Etiemble and J-C. Syre, editors, PARLE ’92 - Parallel Architectures and Languages Europe, pages
415-430, Paris (France), June 1992. Lecture Notes in Computer Science 605, Springer-Verlag.

[Osb90] Randy B. Osborne. Speculative computation in MultiLisp, an overview. In LFP ’90 - ACM Sym-
posium on Lisp and Functional Programming, pages 198-208, Nice (France), 1990.

[Per87] R. H. Perrott. Parallel Programming. Addison Wesley, 1987.

[Piq91] José Piquer. Indirect reference counting: A distributed ge. In PARLE 91 — Parallel Architectures
and Languages Europe, Lecture Notes in Computer Science 505, pages 150165, Eindhoven (Holland), June
1991. Springer-Verlag.

[Pri80] Gianfranco Prini. Explicit parallelism in Lisp-like languages. In Conference Record of the 1980 Lisp
Conference, pages 13-18, Stanford (California USA), August 1980. The Lisp Conference, P.O. Box 487,
Redwood Estates CA 95044.

[QS91] Christian Queinnec and Bernard Serpette. A Dynamic Extent Control Operator for Partial Contin-

uations. In POPL ’91 - Eighteenth Annual ACM symposium on Principles of Programming Languages,
pages 174-184, Orlando (Florida USA), January 1991.

14

[Qued1] Christian Queinnec. Crystal Scheme, A Language for Massively Parallel Machines. In M Durand and
F El Dabaghi, editors, Second Symposium on High Performance Computing, pages 91-102, Montpellier
(France), October 1991. North Holland.

[SGI0] James W. Stamos and David K. Gifford. Implementing remote evaluation. IEEE Trans. on Software
Engineering, 16(7):710-722, July 1990.

[Wan80] Mitchell Wand. Continuation-based multiprocessing. In Conference Record of the 1980 Lisp Con-
ference, pages 19-28. The Lisp Conference, 1980.

15

