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Abstract

Lisp has some specialised capability for reflective operations, exemplified by its macro facility, structured
name spaces, file compilation, file loading and dynamic code synthesis. There has been some progress in the last
few years on the semantics of macros, but the other operations have been categorized as environmental issues.
In this paper, we present a semantics for modules and will show that it substantially reduces the difficulty of
defining precisely several features of usual Lisp systems such as macros, module compilation (file compilation),
module loading (fasl loading) and dynamic evaluation. The module schema addresses the questions of name
visibility and separate compilation. Macro-expansion is specified relative to where and how it takes place as
part of operations on modules.

We do not present a radical Lisp, but rather one that tries to stay within the commonly understood Lisp

paradigm. We do not simply borrow from other languages — the particular behaviour of Lisp precludes this.
The semantics we have developed describes a Lisp with modules and macros enhancing portability and under-
standability.

1 Goals

One of the main criticisms against Lisp is its inability to separate the language from the environment. Although, the
success of Lisp is largely due to this confusion since it allows to easily build convenient programming environments.
As a reaction, Scheme tends to focus on the language itself unembarrassed from non-linguistical features. We
thought that the continuation of the formalization effort of the Scheme community should address the module
aspect and we originally focused on it. Our vision was to provide a Lisp composed of a multitude of linked and
reusable modules. It soon appeared that our formalization of modules greatly simplifies the way we perceive macros
and eval feature. We thus believe that a module facility such as ours allows to clearly separate the intricated mess
of syntactic and semantics problems that were lurking for long around.

This paper is made of three parts dealing respectively with modules, macros and evaluation. We first present
an essential module facility which is inspired by the universal import/export mechanism. The formal semantics
of these modules is thereafter commented since we believe that no complete module definition can be discussed
without formalization. Many subtle issues (such as reloading a module or macros generating new macros) cannot
be perceived in absence of such a formalization. On that basis the macro problems (which are numerous) are
presented one after one with examples. Despiste being tightly coupled we tried to separate them into independent
issues: this part may probably help Lisp programmers to master whatever macro machinery. The formal semantics
of our macro model is then presented as a list of steps to be added to the module semantics. The price paid for
macros makes easy to introduce the dynamic evalution facility. By the way this feature helps us to alleviate some
of the limitations raised for macros.

*This work has been partially funded by Greco de Programmation.
TPart of this work was carried out whilst visiting INRIA (Rocquencourt).
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In this paper we tried to respect the Lisp spirit and thus to limit the number of new constructs (there are four
of them, namely defmodule, loadmodule, startmodule and with-syntax). Many usual features of Lisp find a
way to be expressed in our model. These can be denotations (for the afore mentionned new constructs) or simply
Lisp code (for instance local-defmacro) appearing in libraries. The resulting model achieves the original vision,
retains the “power” of Lisp and satisfies both the implementor and the user since most of the system is written in
Lisp.

2 Modules

This section describes the needed module facility and the usual solutions taken elsewhere. We then describe an
essential solution with some examples. We finish the section by the formal denotational semantis of our module
proposal.

2.1 Which Modules for Lisp ?

The modules we want must allow control over resource visibility and over separate compilation. Lisp’s heavy
reliance on latent types and thus the burden of checking at run-time poses some major problems for separate
compilation. What we will describe is a separate compilation model based on the definition and linking of modules
to build (stand-alone) applications!.

For the purposes of our discussion, we separate the language into two levels: (i) the usual programming level,
comprising special forms (for example, if, setq, lambda and quote), variable reference and combination and (ii)
the module level comprising operations to define and control modules. To category (i) we add the special form
loadmodule. In category (ii) we have two pseudo special forms: defmodule and start-module. We term these
pseudo special forms since they are not necessarily part of the usual programming level and it is possible to think
of several different styles of implementation. For example: modules could be defined and evaluated either from a
toplevel loop or from some job control language (the UN1xZshell, for instance).

Resources are usually shared between modules using some variation of the import/export paradigm. Imports
describe which objects defined outside a module are to be visible within it. Exports describe which objects defined
by a module are to be visible outside it. There is an imbalance in the amount of information available about
each of these. Whilst everything is known about the exports, much less is known about the imports. Because the
knowledge of the imports is imperfect, some kind of checking is required on how an imported object is used. Such
checks can be performed at compile-time, load-time or even at run-time depending on the kind of objects that
are exchanged. If we restrict the exchange of information to concern only variables®, three options are possible:
exchange names (as in C or CoMMON LisP), values (as in Poly[Matthews, 1983]) or bindings* (as in Ada®). We
discuss each of these in more detail now:

names To exchange names implies that there exists a sort of single namespace since it is not possible to import
two different resources with the same name. Needless to say, to share names leads to sharing all the properties
they convey with them, but, principally, their value. In ComMmoN Lispfor instance, to know a name (a symbol
in that world) gives access to its value, its functional value, its property list, its package, the other symbols
of the package ... We are in agreement with Moon’s assertion[Moon, 1988] that packages are not a module
mechanism and should not be abused as such. Thus, we are not in favour of the exchange of names.

values To exchange just values is a kind of negation of modules since to export a value is to compute it, while
importing a value is just to bind it under a local name. A valued-based module system is therefore like a
closure.

bindings Bindings are not first class entities but they are independent of names, so bindings may be imported
and renamed locally. Hence, we propose to investigate further a binding based model of modules.

I Throughout this paper application will denote a stand alone program rather than the case of applying a function to some arguments
(which will be referred to as a combination).

2UNIX is a registered trademark of UNTX Systems Laboratories, Inc. in the USA and other countries.

3Since we have taken a Scheme-like dialect of Lisp as our base language, our language is single-valued and there is no difference
between exporting a variable and exporting a function.

4The var directive of Pascal is a good example of how bindings can be shared.

5Ada is a trademark of the Ada Joint Program Office.
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Efficient compilation is difficult. Inlining or suppressing the arity test cannot be done if functions are only known
at run-time. To know types at compile-time and to exchange them may lessen these penalties. In a typed language,
global variables are typed and so are their associated bindings. This type information can be kept as a property
of the binding and therefore also exchanged in order to permit inter-module checking and optimization. For us, a
binding is a location, perhaps accompanied by some useful information. Names can also convey at compile-time
the same extra information but do not offer the opportunity for renaming. Values only convey their types but only
at run-time and thus preclude any compile-time optimization. We are not proposing a typed Lisp here, we only
stress, as it is currently done in some implementations, that some type informations (explicitely provided by the
user or inferred by the processor) can be transferred via the import/export mechanism.

In summary, we think that modules are essential for modern Lisps and furthermore that modules do not
correspond directly to closures. We also want to reduce the number of symbols, which as a side-effect consume a
lot of memory, but also create the kinds of loophole we identified above. We therefore choose to share bindings —
that is, locations.

2.2 An Essential Solution

The essence of the module scheme proposed here is sufficient to describe the abstract syntax and to keep the size of
the denotational descriptions manageable. The model defined in this section is only for the purpose of discussing
the meaning. This solution is sufficiently powerful to satisfy our needs. It is simply inconvenient for practical use.
A proposed syntax of a practical model is given in section 2.7, but the principles are those of this section.

We define the syntax of the pseudo special form defmodule as follows:

defmodule ::= (defmodule name imporit-spec export-spec form)
import-spec =  (an-import-spec*)
export-spec = (name*)
an-tmport-spec  := (module-name exported-name tmported-name)

We now examine the syntactic components of the defmodule form in detail:
name A module has a name which identifies it in the Module Environment: ModEnv.

import-spec The import specifications declare which bindings are to be imported from other modules. All imports
are explicit — that is to say there are no implicit or automatic imports. However, the special forms of the
language are available in every module, because they are part of the syntax of the language — they are not
functions, indeed the names are not bound to anything, and therefore they cannot be imported. The import
specification is a list of 3-tuples, each of which specifies the importation of a single binding. The elements of
the 3-tuple name the module from which the binding should be imported, the exported name of the binding
in that module and the name the binding is to be given in this module, respectively.

ezport-spec The export specification is a list of names identifying the bindings to be exported. Exported bindings
must correspond to top-level bindings of the module — that is, bindings associated to names appearing free
in form. Imported bindings can be re-exported providing restriction or encapsulation capabilities as well as
partial-linking.

form The form is the body of the module®. This form will only be evaluated at module loading not at module
definition. It suffices that the free variables can be extracted at definition time.

Let us give an example of a simple module: (defmodule Ackermann
((arithmetic integer-eqn =) ;s Import =, = and <

(arithmetic integer-subtract -)

(arithmetic integer-lessp <))
(ack ack-max) ;3 Export ack and ack-max
(progn

(setq ack-max 4)

(setq ack

(lambda (x y)
(if (=x0) (-y -1)

6 The restriction to a single form is intentional, since it avoids unnecessary complexity in the semantic equations. Besides, we assume
the existence of progn.
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(if (=y 0) (ack (- x 1) 1)
(if (< x ack-max) (ack (- x 1) (ack x (- y 1))
(error "Compute it yourself !"))))))))
Two top-level bindings exist in the Ackermann module and both are exported. Thus, these bindings may be
used in elsewhere. To use the Ackermann module a student may write: (defmodule student

((Ackermann ack ackermann) ; s only import the function
oY) ;s also import dotimes and printf
O ; s exports nothing

(dotimes (i 31)
(dotimes (j 31)
(printf "Ackermann(“D, D)="D"%" i j (ackermann i j)))))
while a teacher may write: (defmodule Ackermann-for-students
((Ackermann ack ack)
(Ackermann ack-max max))
(ack)
(setq max 3))

and require the students to use the new module Ackermann-for-students to limit cpu consumption. Note that
when this module is loaded, the Ackermann module will also be loaded and the binding of its ack-max variable will
be modified to 3. The Ackermann-for-students is an encapsulation of the original Ackermann module, denies
access to ack—max but transmits the ack function as it is. We leave access rights to modules themselves as an
environmental issue.

So far this section, we have defined the syntax for our essential model and illustrated how this model can be
used. In the following three subsections we give English semantics for module definition, loading and entry before
turning, in the fourth succeeding subsection, to the denotational semantics of module operations.

2.3 Module Definition

When a module is defined, the following analysis takes place:

1. Importations are checked. For each imported binding (module-name exported-name imported-name), the
module module-name must exist and ezported-name must be exported from it. Each binding import specifi-
cation contributes to the top-level environment being built for the module being defined. Each such binding is
checked for name-conflict, since no two imported names can be the same. Note that mutually referential mod-
ules are not possible because of the definition before use requirement. Hence, the importation dependencies
form a DAG.

2. The body of the module is analysed and all free variables are extracted. The free variables are added to
the module’s top-level which already contains the imported bindings. If such a variable is new, then it is
associated with a new location. It is important to note that the extraction of free variables depends only on
the knowledge of the set of special forms of the language. The special problems created by macros will be
addressed in section 3.

3. Exportations are checked. Each name appearing in the export specification of the module must also be
defined in its top-level environment.

4. The module is added to the module environment ModEnv bound to the given name.

All the previous steps are known as the module definition phase. Module definition is done in a null lexical
context and corresponds roughly to the construction of an interface description. Note that, so far, no evaluation
has been performed.

After a module has been defined, it can be used in the definition of other modules — that is, its bindings can be
imported (and re-exported) — all without evaluating anything in the original module. We leave as an environmental
issue the consequence of module redefinition: it perhaps involves recompiling all depending modules.

The exposed module scheme allows separate compilation in the following sense: modules may be compiled in
whatever order provided this order satisfies the constraints imposed by the import clauses. This independence
will be clear from the denotation of section 2.6. Our view of modules and their use in separate compilation
completely dissociates the use of (reference to) a module from its evaluation (loading). Reference to a module
provides information about its exported bindings and allows reference to them. It is loading a module that allows
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the dereferencing of its exported bindings to gain access to their values. The act of loading a module causes its
bindings to be filled in.

Another good point of the module scheme is the precise control one has over time which allows to reject
semantical obscenities such as eval-when [Steele 90, Dybvig 87]. If one wants something to be processed at module
definition time then macros (see later) are there, if one wants some code to be run at load time then this code must
be included in the body of the module.

2.4 Module Loading

To dereference the bindings of a module, it must be loaded. A module is loaded by means of the load-module
special form. (load-module module-name)

A module can be in one of two states: loaded or not-loaded. Regardless of the state of a module, the load-module
form always loads module-name.
Loading a module causes the following sequence of actions to be taken:

1. All the modules imported by module-name are loaded — if they are not yet loaded. If they themselves import
other modules, those modules will be imported first, and so on. The DAG describing import dependencies is
traversed in order, loading modules as necessary. The result is that every imported binding will really exist
somewhere in the store before any attempt is made to dereference it.

2. The proper part of the top-level environment is allocated. The top-level environment of a module is divided
into two parts: its proper part, which defines the locations for the free variables defined in the body of
the module and the imported part, which is the set of proper parts of the imported modules’ top-level
environments.

3. The body of the module is then evaluated in that newly-created top-level environment.
4. The module is marked as loaded to avoid automatic re-loading (see step 1).
5. The value of the Load-module special form is the value returned by the evaluation of the body of the module.

A module can always be reloaded explicitly using load-module, in which case the process starts from step 3.
Reloading a module does not require the reloading of the modules it imports since the exported locations do not
change and similarly with modules that import it. The ability to load a module explicitly allows control over the
order of module loading.

2.5 Module Entry

Having defined an application constructed from a collection of modules, some way is needed to start the
application and provide some initial arguments. For this, we have the start-module pseudo special form.
(start-module module-name function-name OS-arguments)

Any exported binding can be the entry point of a potential application provided that module-name is an existing
module and that function-name is an exported binding. The module-name is then loaded and the contents of the
function-name binding is retrieved, checked to be a function and then applied to the unevaluated OS-arguments.
The OS-arguments represents the initial information given to the application: it may well be something which
looks like (arge, argv) as in UNIX, but we purposely do not specify the format, at present. It is the duty of
start-module to place these OS-arguments in the initial store of the application. The start-module form is
evaluated as if in the null lexical context.

We can now explicitely state what is a program in our world. A program is a sequence of module definitions
followed by a single start-module form. This contrasts with the usual interactive philosophy of Lisp where a
toplevel loop allows the user to submit forms, function, module or macro definitions as well as she can load or
compile files, disassemble or debug applications. In our wiew this toplevel loop is a particular application: a kind
of shell which does not strictly implement the language since it allows to alter module meaning, violate information
hiding, mutability of bindings and so forth. A module defining a toplevel loop will be discussed in section 4.2.
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We claim that our semantics as it is” can be implemented by truly equivalent compiler or interpreter since it is
the semantics of a language not of a particular application. We thus disconnect the language and the environment.

2.6 Module Semantics

We now turn to the question of the formal meaning of these module operations in the context of a simple Lisp-like
language. This formalization is necessary since the definition of macros and eval features would strongly depends
on it and, given the subtleties and pitfalls related to these concepts, a clean semantics is obviously needed. The
domains of such a language are:

¢ € Fun = Value* x Store x LoadEnv x Cont — Answer
k € Cont = Value x Store x LoadEnv — Answer
p € LexEnv = Id — LocationU {lezenv-location-not-found}
o€ Store = Location — Value U {store-undefined-value}
¢ € Value = Fun+4 Sexp+...
a € Location
Meaning = Id x ModEnv x LexEnv x Store x LoadEnv x Cont — Answer
ve 1Id an identifier
7€ Form a form

Several notational conventions have been employed. These are taken from [Rees & Clinger 1986] except that we
suffix variables with small letters to indicate their origin: m for Meaning, f for Fun etc.. We suffix with a star (*)
variables bound to sequences. Syntactic forms such as if ...then ...else ...endif or let ...in ...are part of the
metalanguage. For sum domains, if € belongs to S = D; + ...+ D,, then sumecase ¢... endsumecase dispatches
on € to the particular subdomain of the union of which ¢ is a member. For example, (¢)° |, is the projection of €
from S to D and (¢),,1® is the reciprocal injection from D to S.

Conditional expressions (if) and quotations (quote) are omitted since they are not relevant to our current
discussion. Again, to simplify discussion, parameter evaluation is defined as left-to-right. More interesting are
the three additional parameters in the semantic functions: v,,, g and 6. They represent the current module
name, the module environment and the loaded environment, respectively. Their precise definition will appear later.
The name of the current module is not really necessary but will be needed when discussing eval semantics later
on. The module environment maps identifiers to modules while the loaded environment records which modules
are loaded and their associated top-level environment. g and 6 respectively represent the static and dynamic
components of modules. Note that p is constant throughout these equations. A compiled application closes the
module environment since it incorporates the compiled code of the modules it knows at compile- or link-time8.
The other parameter (6) is single-threaded and follows the store (o) route.

The denotational equations for this Scheme-Lisp-like language are:

£ : Form — Meaning
g[[V]]VmNmpmgméme: Km(gm(pm(l’)); Om, 5m)
El(setq v M) WmbtmpPmOmOmEm= E[T|(Vm, bm, Pms Om, Omy A €008 « km(Ee, 0c[pm (V) — €c], 6;))

E[(Lambda v* 7)Vmpm Prm Ombm Em=
let ¢ = Acjopépry . if e} =g~ — check arity
then let a* = new — locations(oy, jv*)
it £[7) (Vi o pmlv” — '], 77l — 31,87, 7)
else wrong(“Wrong Number of Arguments”)
endif
in K ((9)pn 1V, Oy Om)

Sll(ﬂ' 71'*):l]Vm/Jmpm0'711671”LK77”L:
EMT] W, tims Pns Tons 6oy

"We will see that the introduction of macros able to create syntactically recursive procedures will pose some problems concerning
the equivalence between interpreter and compiler.

8That allows partial linking at module definition time i.e.to collect modules definitions into a single logical one with all (now)
internal references hardwired.



DAl 1 — Modules, Macros and f.vaiuation — DUitAl' 1 i

A g.0:.0. . sumecase ¢, — check functionality
Fun : (5* [[T*]])(Vm’ Hm, Pm, Oc, bc,
A EncOncbne - ((5c)val“el1‘un(5nc; One, bne, "fm))
otherwise : wrong(“Not a function”)
endsumcase )

&* : Form™ — Meaning — ako evlis
o [[]]Vm/lmpmo'm(sm"fm: Km(<>; Om, 6m)

EX 7 ™ Wmbbm Pm OmOmEm=
glIW]](Vma/Jmapm;Umaéma
A €c10:1601 g*[ﬂ'*]](llmaﬂm;pm;aclaécl; A €020:26c0 . Km(< Ee1 > §5021002;602)))

This semantics is standard and should not pose problems. There is only one lexical environment (p) for variables.
There is no point in checking if a variable is in p since the semantics of defmodule will ensure that any free variable
is associated to a top-level location. Note that for any piece of program, the current p always extends the top-level
environment of the module wherein that piece of code appears. This matter will be clarified when we get to the
semantic definition of defmodule.

A module is a 3-tuple containing the list of the exported identifiers, the quasifunction that will load the module
(it is a quasifunction since it behaves like a function except that it does not take arguments) and the quasifunction
which is able to reinitialize the module — that is, reevaluate its body in its own top-level environment. LoadEnv
maps module-names to their top-level environments and also keeps track of whether a module is loaded or not.
These new domains are:

6 € LoadEnv = Id — LexEnv U {not-loaded}
QuasiFun =  Store x LoadEnv x Cont — Answer
Module = Id* x QuasiFun x QuasiFun

p € ModEnv = Id — Module U {modenv-module-not-found}

The description of defmodule was given informally earlier in this section. We now give a denotational descrip-
tion. Some utility semantic functions are used: CZ is a predicate checking importations, £V extracts local names
— the name under which it has been imported — from importations, FV extracts free variables from the body of
the module (FV is not given here), C€ is a predicate checking exportations, £ loads (if not yet loaded) imported
modules, R retrieves actual locations of imported modules and augment—Ilocations adds fresh locations needed for
free variables in the proper part of the top-level environment. The result of a defmodule pseudo special form is an
extended ModEnv. The M valuation function gives a meaning to modules. M takes and returns an environment
mapping names to modules.

M : Form — ModEnv — ModEnv U {incorrect-module}

M[(defmodule v * v} m)]um=
if pp (v) = modenv-module-not-found

then if (CZ[*])(m) — check importations
then let v = LV[*] — extract local variable names from importations
and v} = FV[7] — extract free variables from the body
in if CE[; vy} — check exportations

then pp,[v — make-module(v, *, v}, vi v, Hm)]
else incorrect-module
endif
else incorrect-module
endif
else incorrect-module
endif

make-module(v, ", v;, Vi, v, @, jim) =
<y, — list of exported variable names
A oibik; . — module initializer
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(LD (pm, 01, 65, — load unloaded imported modules
A €c10c10c1 -
let p = (R[¢*])(6c1) — retrieve imported bindings
in augment — locations(l/;ﬁ,p, Cel, — extend with proper bindings
A po . (E[xD) (v, tim, p, 0, b1, — evaluate the body
A €e20cabcn . ’fi(ECZ;UcZ;(ScZ[V — P]))));
A obikr - (ER)) (W, o, (V) 01, 81, K1) > — module reinitializer

The start-module pseudo special form has the denotational description given below. Note that the module is
first installed (that is, its imported modules are loaded and its body is evaluated) and then the specified entry point
is sought in the resulting top-level environment, checked to be a function and called with the arguments provided
by the operating system or whatever starts the module. In fact, the OS-arguments (¢e,,) are then incorporate-d in
the current store® and then control transfers to the entry point. The final continuation K final is implementation
dependent, although it probably exits the application and returns to the caller whatever that may be. Note also
that initial (i.e.empty) store o, and loaded environment é;,;; are supplied when the module is started.

M[(start-module vy, Vs €o5)]im=
if pim(vm) = modenv-module-not-found
then incorrect-module
else (fim(vm) | 1)(init, dinit
, A €c10c16e1 - sumcase 0.1 ((6e1(vm))(vs))
Fun : (incorporate(eos))(oc1, A €c20c2 «
(@e2((Be1(¥m)) () """ Lewn
(< €cz >, 0.2, 002, K?ﬁna[))
otherwise : wrong(“not a functional entry point”)

endsumcase )
endif

The load-module special form (re-)initializes a module. Its denotational description is given below. It simply
reevaluates the body form in the module’s top-level environment. The top-level environment referred to is only
created once, when the module is first loaded. An interesting observation is that although it might seems pointless
to load a module unrelated to an application, because that module might share locations with the application,
loading it might modify the contents of these locations. Consequently, we do not require the module v to be in é,,,
but permit arbitrary loading of any known module!®.

E[(Lload-module v)|Vmtm PO mOmbkm=
if (V) = modenv-module-not-found
then wrong(“no such module”)

else if 6,,(v) = not-loaded

then (pum(v) ] 1)(om, ém, km) — inatialize the module
else (um(¥) | 2)(om, bm, km) — reinitialize the module
endif

endif

The supporting semantic functions for the module semantics are given in appendix A.

2.7 Practical Variants

>> The defmodule facility we have described has a rather crude syntax. It is not hard to devise something
much more convenient — importing each binding one-by-one is tedious, much better would be the means to import
all the bindings, or a selection of the bindings of a module in one go. Specifying both the exported-name and the
imported-name, although useful to circumvent occasional name-clashes, is tiresome — in general, it suffices to use
the same name as that with which the binding was exported.

9The incorporation is what does the usual read function.
10 This capability will prove to be useful for macros.
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>>  Another extension to importation is to have local importations. For example, a syntax such as:
(access module-name exported-name)

could designate a precise and exported location from a module named module-name. This syntax could be
used in the context of a variable reference or variable assignment. This local importation facility also known as
a qualified name will prove to be useful when discussing macros to avoid capture problems. An equivalent but
not unusual syntax makes use of a colon between the module name and the name of the variable such as module-
name: exported-name. Note that this syntax is given a meaning at module definition time and not at parse-time as
in CoMMON Lisp.

>> Exportations have also suffered from our desire for simplicity and are specified as part of the syntax of a
module in symmetry with imports. It is not necessary to be so strict. We hereby propose an extended syntax, more
convenient than the previous spartan one, to deal with importations and exportations. We wanted this syntax
to be highly readable and to correspond to a simple mental model. It is based on a notion of sequence of names
standing for bindings and is nearly symmetric as for import or export. An importation or exportation is a directive
with one of the following syntax:

directive ::= (expose module-name)
| (only (names...) directive)
| (except (names...) directive)
| (rename ((new-name old-name)...) directive)
| (union directive...)
| (mutable directive)
| (immutable directive)

e expose produces a sequence of binding names which correspond to the exported environment of module-name.
Recall that no duplicated names can exist in an exported environment.

o A sequence of names can be restricted by filtering only names from a given set or ezcept names from a given
set with respective help from only or except directives.

¢ Bindings can be renamed thanks to rename. Note that it is legal to simultaneously exchange names such
as in (rename ((a b)(b a)) directive). Nowhere can a sequence contain an ambiguity i.e.a name-clash so
creating duplicates will raise an error.

o It is of course possible to merge directives with union. Once again the resulting sequence is checked to not
contain duplicates.

e On the practical side, we add two specific filters controlling the mutability of bindings. They convert a
sequence of names into the same sequence of names but with the according mutability. Of course it is a
syntactic error to try to turn a previously immutable binding into a mutable one. This extension shows that
other directives can also be added!!.

The model is nearly symmetric. The only discrepency is that we allow module M to write (expose M) to
export all its toplevel bindings whilst we do not allow to import oneself.
Let us give an example of an hypothetic module providing the usual library of Lisp functions: (defmodule Library
(expose assembly-defined-procedures) ; s tmportations
(union ; 3 exportations
(rename ((call/cc call-with-current-continuation))
(expose assembly-defined-procedures) )
(expose Library) )
(setq cadr (lambda (e) (car (cdr e))))
)

All bindings of assembly-defined-procedures (including for instance car, cdr, call-with-current-conti-
nuation ...) are reexported as they are thanks to (expose Library). New functions defined in the module
itself such as cadr are also exported in the same go. A short nickname (call/cc) is also provided. Note that
(eq call/cc call-with-current-continuation) is always true since the two names refer to the same location
whatever content it has !

11We will see an example in section 3.12.
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>> In addition to the lexical environment, Lisp also have a dynamic variable binding environment.
It may be desireable that the operation of loading a module be affected by the contents of this dynamic
environment. For example: (dynamic-let ((*pi-precision* 18))

(load-module trigonometry))

will set up the pi constant — a top-level variable in the trigonometry module — to an accuracy of 18 digits.

>> Having load-module as a special form does not prevent us to have a function which does the same thing:
say (dynamic-load-module ’module-name). The advantage of the load-module special form is that since the
parameter is not evaluated it is possible for a program to determine statically the modules required to build a
stand-alone application. Should the capability for dynamic loading of modules be present, the run-time system
must be extended to cope with this. If the dynamic loading capability is kept in the dynamic-loading module,
then in the absence of eval or symbol-function, it can be determined statically if the facility is required in an
application. These properties are crucial if one wants to build small applications easily.

>> Modules can be mapped onto files provided that the quasi special form defmodule is able to compile a
file as a module. The file may contain two initial expressions respectively corresponding to the importations and
exportations followed by a sequence of expressions: its body. We do not address in this paper, problems related
to macrocharacters. Outputs of the module definition can be an interface file describing imported modules and
exported locations as well as an object code file, a “.0” file in the UNiXterminology.

2.8 Conclusion on Modules

We have been defining an essential module facility which fulfills different goals. First, modules allow information
hiding via import/export clauses, second, the concept of application, module definition and module loading are
now clear. Several benefits arise which mainly are — separate compilation, — partial linking, — and selective
linking. This module facility while keeping with the Lisp spirit clearly separates linguistic from environmental
issues. With such a facility, some static analyzes such as “are locations initialized ?” or “does this variable need
to be recomputed if the module is to be reloaded ?” can be performed since all uses of variables are known in the
module and mutability of their possible exportations is also known. Note that such analyzes circumvents the fuzzy
behaviour of define in Scheme as well as the notion of infegrable procedures. To partly answer these questions
tremendously improves the efficiency since a location which is guaranteed to be initialized can be read without
having to check if it contains the “undefined” value. A location which is always bound to a value which does not
need to be recomputed, i.e.a constant, can be propagated or inlined with benefits.

3 Macro Expansion

Much of the power of Lisp stems from macros, but while their normal use does not pose problems for users, their
semantics is somewhat bizarre. Macros provide a way to extend the syntax of Lisp. Such extensions are specified
by rewriting rules which computation is expressed in Lisp and which aspect mimics combinations. This funds
the power of macros but blurs the linguistical borders between definition and evaluation both in time and space.
Under the “macro problem” title many subproblems can be identified and were attacked. For instance Kohlbecker
[Kohlbecker et al., 1986], Bawden and Rees [Bawden & Rees, 1988] addressed the name capture subproblem while
Dybvig, Friedman and Haynes [Dybvig et al., 1988] addresses the code-walking subproblem with the Expansion
Passing Style (EPS). Neither of them analyse the relation between macros and modules which was only recently
addressed [Curtis, 1990].

The next section will present examples illustrating the different macro subproblems. Some of them are somewhat
artificial since most of these problems are interconnected and to focus on one tends to neglect the others. Current
solutions to these problems are also covered. The semantics of macros is finally presented in section 3.11.

If we were to shortly express the problems lying with macros, we would say “when, where, and how” ! Since
macroexpansion is a Lisp computation, it has to be clearly defined with respect to which environment and contin-
uation are performed macroexpansions, what is the lifetime of side-effects, etc.

3.1 The Status of Macros

A macro call may be viewed as a directive to the macroexpansion process to rewrite the directive itself into another
text. A macro call mimics a function call in that it uses a similar syntax i.e.a non empty list. A keyword stands
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in the car of this list and is associated to an ezxpander: a regular function that rewrites the text of the macro call
i.e.computes another text to replace the original one.

The usual shape of a macro call is a list but it is also possible to have macro symbols: the rewriting rule
is triggered by the occurrence of the macro symbol'?. More generally the entire text of the module has to be
walked in order to produce a fully expanded text which must be a regular form. This leaves room for general
walkers performing non trivial tasks such as curryfication or introduction of call by need [Dybvig et al., 1988].
This description does not constrain a macro to be a first class object nor it allows to apply macros, to retrieve
them by their associated keyword ... We thus keep macros outside first class objects and let them deal only with
syntax.

3.2 The Name Capture Problem

The result of an expression may refer to names that are free. They may thus be assigned a meaning depending
on the exact place where they are inserted. Consider for instance: (defmacro push (item place)
‘(setq ,place (cons ,item ,place)) )
setq and cons appear free in the expansion, they are susceptible to be captured!® asin'*: (macrolet ((setq (name f:
(flet ((cons (x y) ...))
(push o B) ... ) )
The result of the expansion although correct from the viewpoint of the implementor of the macro is likely to be
erroneous since setq and cons have probably incompatible local meaning.
Some solutions were studied. Hygienic expansion [Kohlbecker et al., 1986] proposes a scheme where potential
name captures are predicted and implicitely alpha-converted avoiding the need to explicitely call gensym.
Another solution is provided by syntactic closure [Bawden & Rees, 1988]. Programs are written according to
a precise syntax. Syntax may be locally modified and program excerpts may be closed in a given syntax. Some
“holes” may be offered'® within a closed expression in order to freely fill these holes with other closed expressions.
For instance the expansion of the previous push macro has to be considered with respect to the syntax that
was current where the push macro was defined. The push expansion contains two holes that will be filled with
expressions closed in the syntax that will be current at the point where the push macro will be called.
A third solution is to explicitely “qualify” variables (i.e.specifying their original module whre they were defined)
and write (access standard cons) instead of cons!®. This provides only a partial solution since special form
names can still be captured. This can be solved if we control the macroexpansion process with EPS for instance.

3.3 The Walking Algorithm

Some macros perform side-effects. For instance a defclass macro as provided by an object oriented layer,
enriches the hierarchy tree (or dag) of classes. Side effects can only be mastered if one can control time or
sequentiality i.e.the order along which are performed macroexpansions. Consider the following queer macro:
(defmacro foo (x y)

(if (evenp (incf *foo-counter*)) x y) )

It is not hard to devise some variants fo the macroexpansion algorithm that takes (foo (foo a b) (foo ¢ 4))
and returns a, b, ¢ or d wether the algorithm is bottom-up or top-down, left to right or right to left'” and given
the initial parity of *foo-counter*.
Another queer macro emphasizes the relative timing of macroexpansion versus compilation. Consider for
instance: (defmacro memorize (&whole form)
(push form *the-memorized-forms*)
‘(quote wait-a-little) )

(defmacro end-of-memorize ()
(dolist (form *the-memorized-forms*)
(setf (cadr form) (length *the-memorized-forms*)))

12 symbol-macrolet is an example of this feature which had recently been added to CoMmoN Lisp.

13The syntax of the following macrolet is taken from CoMMON LIsp.

14We neglect the possible problem that the setq special form may be implemented as a macro that can be shadowed by a local macro
definition. Often special forms cannot be altered nor shadowed.

15 Actually they are restricted to be only symbols.

18 Of course, we suppose that the original cons function is defined in the standard module.

17Scheme does not imposes the order along which are computed the arguments of a combination. Macroexpansion may also take
this view.
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(length *the-memorized-forms*))

The memorize macro is strange because it collects information from all the places it is used until end-of-memorize
eventually modifies all the temporary expansions previously performed. Unless macroexpansion is done incremen-
tally — separate from compilation — then this behaviour would work. However, it imposes the additional constraint
that syntactic checks cannot be done before the macroexpansion process is finished. This, in turn, requires two
walks of the text of the module but is clearer from the semantic point of view.

A solution proposed in [Curtis, 1990] is to leave the macrowalk algorithm completely undeterminate. While
this undeterminacy fits well with the Scheme semantics of combination, it ignores the sequentiality of other special
forms such as if or progn. Therefore apart embedding one’s code in a macro which performs its won code-walking,
mastering side-effects seems difficult. Although partially unknown the usual macrowalking algorithm seem to be
depth-first and left to right: the second solution is to publish the exact macroexpansion algorithm and to let
the user provide its own way of expanding expressions as done in EPS. This allows to extend the macrowalking
algorithm by appropriate “methods” sparing the burden to write such a walker.

The whole macroexpansion process is related to syntax and must yield a pure expression that can be further
transmitted to the evaluator or module definer.

3.4 Expansion at Will

It 1s sometimes useful to be able to macroexpand at will some expressions. This facility is usually offered
by the mean of the macroexpand function. The macroexpand function takes a text, walks it according
to the current syntax and returns a new text. If the syntax can be locally modified then different ver-
sions of macroexpand exist corresponding to the various syntaxes. This situation is recognized by EPS
[Dybvig et al., 1988] which allows the user to get the current macroexpand when performing a macroex-
pansion. An expander is thus a function that takes a text to macroexpand and the current macroexpand
function (which in a way closes the current syntax). The expander returns a text which replaces the original
one. This result is considered as definite i.e.is not walked any more. What is the signature of macroexpand
7 Clearly it must take a text to macroexpand but since this text may contain embedded macro calls, it must
provide the current macroexpand to these macro calls. So macroexpand has the signature: (lambda (texzt
macroexpand) text)

We can take benefit of this facility and propose to rewrite the push expander as: (lambda (text macroexpand)

(let ((item (macroexpand (cadr text) macroexpand))

(place (macroexpand (caddr text) macroexpand)) )
‘(setq ,place ((access standard cons) ,item ,place)) ) )

The contract of an expander is to return a fully expanded text by recursively expanding, with the appropriate
macroexpanders, the various subparts of the macro call. The result must be a pure text of the language and
does not need to be reexpanded. This contrasts with the usual behaviour of macros (as in ComMoN Lisp) where
macroexpansion is performed again and again until the text becomes unexpandable i.e.an atom or a list which car
is not a macro keyword. Control is then given back to the hidden walker which tries to expand subparts that may
still contain macro calls.

The above described macroexpansion looks like syntactic closures except that texts are not closed in their syntax
but macroexpanded according to the current syntax until becoming a regular expression.

3.5 Compiler Macros

Macros are sometimes used to perform some optimizations that the compiler may not discover by itself.
Consider for instance the acons function: (define acons (lambda (key val alist)
(cons (cons key val) alist) ))
To avoid the cost of calling acons, acons may also be associated to a macro: (defmacro acons (key val alist)
‘((access standard cons) ((access standard cons) ,key ,val)
,alist ) )
Now consider the following excerpt: (acons ’acons acons ’())

If we were to retain only one of the two definitions of acons, we would loose or the inlining of acons or the
functional value of acons. Neither of both is acceptable according to current practices.

A first solution is to inform the compiler that the acons function can be inlined. This can be done by a declare
or proclaim form as in CoMMON Lispbut may also be inferred by a very clever compiler. The problem is that
compilers do not guarantee to take this declaration into account. To thus define acons as a macro guarantees the
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inlining to be performed but it then seems difficult to extract the function definition from the macro definition and
to provide where necessary the functional value of acons. The best way is to combine the two approaches: acons
is defined as a function, an expander is derived from this function and whenever acons is imported, the expander
for acons enriches the importing syntax. Now, depending on the context where acons occurs, functional calls to
acons will be expanded while references to the acons variable will be left in place. We will see later how to enrich
a syntax in such a way.

This solution mimics CoMMON Lispcompiler-macros but has a clearer semantics since it separates the two
involved effects: the semantical and the syntactic one.

3.6 The Language of Macros

What is the language in which are expressed macros 7 For sure they are written in Lisp ! The question is not so
naive. Can the body of a macro use an extended syntax i.e.can it use macros itself and which ones 7

A macro is associated to a regular function: an expander. This function has to be defined in some module which
clearly specifies the set of bindings that can be referred or altered but also the syntax of the expander i.e.what
macros it can use. This view has a drawback in that the expander can only be used after the module had been
loaded, therefore a macro cannot be used inside the module it is defined in'®.

There exists a predefined syntax described in section 2.6 roughly equivalent to the essential syntax of
Scheme. The initial macroexpand knows how to code-walk an expression written according to this syntax.
We propose that syntax can be modified thanks to: (wi‘th-syn‘tax (module-name exported-name)

expression )

The meaning of this syntactic form is:
e load, if needed, the module-name module,

e retrieve the value of the exported-name variable which must be exported from module-name and must have
a functional value. This function will be known as a syntax modifier.

e apply the syntax modifier to the current syntax i.e.the current macroexpand,
o the result is the new macroexpand that will be used to macrowalk the ezpression.

The signature of a syntax modifier is then: (lambda (macroezpand) macroezpand)

This form allows to introduce new macros as in: (define push-macro ; 3 This definition belongs to the
standard-macros module.
(lambda (syntax)
(extend syntax ’push
(lambda (text macroexpand)
(let ((item (macroexpand (cadr text) macroexpand)
(place (macroexpand (caddr text) macroexpand) )
‘(setq ,place ((access standard cons) ,item ,place) ) ) ) ) )
;33 One can extend syntax thanks to extend
(define extend
(lambda (syntax keyword expander)
(lambda (text macroexpand)
(if (and (pair? text)
(eq? (car text) keyword) )
(expander text macroexpand)
(syntax text macroexpand) ) ) ) )
;33 and one can use the push macro as in
(with-syntax (standard-macros push-macro)
(push Q P) ... ) ...

A more convenient facility can be introduced to lessen the burden of macro definition: the defmacro

macro. If we suppose to already benefit of defmacro, it will be defined as: (defmacro defmacro (name variables .

‘(lambda (syntax)
(extend syntax ’,name
(lambda (text macroexpand)

18WWe will nevertheless present later a solution to overcome this defect.

body)
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(macroexpand (apply (lambda ,variables . ,body)
(cdr text) )
macroexpand ) ) ) ) )

The with-syntax syntactic form also allows to introduce locally specialized syntax. The following function
(lambda (syntax) standard-macroexpand) is a syntax modifier that reestablishes a pure syntax without any
macros. This feature allows to juggle with syntaxes like syntactic closures except that we do not introduce a new
concept but turn texts into the lingua franca: the pure syntax with its limited set of special forms. with-syntax
is not a special form, it is only a syntactical form (like access) i.e.a directive that will be obeyed during macroex-
pansion. Note that this capability to introduce a peculiar local syntax is not possible in a model (as in usual Lisps)
where the result of a macroexpansion is reexpanded at its calling site.

The initial question is then answered: a macro is supported by a regular function, a syntax modifier, locally
introduced by with-syntax. The syntax modifier obeys to the syntax of the module it belongs to.

3.7 Scope of Macros

In usual Lisp sytems, macros are defined thanks to defmacro or macro forms. These definitions have
problems related to scope and availability. Besides these forms also exist a local macro definition form
such as macrolet in CoMMON Lispwhich does not have these problems. Consider the following definition:
(defmacro foo ...)

Where is available the macro foo 7 In the whole module containing foo, everywhere after the definition of
foo or outside the module. A functional definition is available in the whole module since the toplevel environment
provides an implicit letrec. If a macro is to have the same capability, then nothing can be known before the body
of the module has been inspected to know which are the macros. But now what if macros are redefined 7 And
what if macros generate new macros 7 Clearly this view suggests many problems.

Consider now that the macro is only available after being defined i.e.somethinglike: (progn (defmacro foo ...

o)
which may be considered as equivalent to: (macrolet (foo ...)
a )
This view generally imposes the concept for foplevel forms so that deeper macros can be seen as in:
(progn (progn (defmacro foo ...)
o)
8 )

since most people probably want 3 to be aware of foo. The concept of toplevel-forms introduce a grammar
which indicates which forms in a module can be considered as toplevel. If a toplevel form is a macro definition
then it will be available for all following forms.

But two kinds of macros can be recognized wether one wants to export them or not. To assimilate macros to
local ones as we did above denies the exportability of them.

Another problem lies with the language that can be used to define the macro. We said that it should be the
language of the module so a macro can use the macros of the module as well as the variables and functions of
the module and that is clearly bizarre since macroexpansion takes place before these variables and functions are
defined. This leaves with a single solution, macros cannot be used in the module where they are defined and
with-syntax is the only way to introduce them solving the problems of scope (the body of with-syntax) and
availability (outside the module where the macro is defined).

3.8 Termination of Macroexpansion

If macros are functions that convert syntax to other syntax by an unrestricted computation then they cannot be
guaranteed to terminate in all cases (though the user is suggested to try to). The default of that is that a program
using macros cannot be denoted by standard denotational semantics since to fully expand the body of a module is
a computation that cannot be bounded in time.

The denotation we gave for our language used two semantical functions M and & dealing with the modules and
the rest of the language. The semantics of a module was given in 2.3. To deal with macros just imply to modify
the step 2 as such:

2a the body of the module is converted into an S-expression €. This value belongs to the Value domain and
cannot be considered independently of the store oy where it lies.
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2b This S-expression is macroexpanded and, if it terminates, yields a value ¢p in a store op.

2c¢ This value €p is converted into an element of the Form domain: . Syntactic checks are made when translating
¢p 1nto .

2d the rest of the module definition is then resumed as explained in the original step 2 of section 2.3.

Step 2¢ may be viewed as if we were freezing the store op i.e.the body of the module is immutable and cannot be
altered by further use of physical modifiers such as rplaca or rplacd. Rather than converting a value into a form
we can adapt the semantical equations defining £ to directly deal with values (see figure 1).

Value x Store 3 (eg, o)

]

Form 57«  Value x Store 3 (ep,0p)
(C/‘ l / gl

Denotation

Text

Figure 1: The denotation of macros

Let us give a flavor of this new function £’ which now mimics a classical interpreter:

E'([(setq v T, 0D )Vmtm PmOmbmEm=

E'([m],0D0)(Vm s Bms Pms Tms 0my A €606 « km(ee, oclpm([V]) — €c], éc))

where [v] = op(op(([(setq v )]V |pucl 27" | ouiel 1) — ako cadr !

(7] = op(ep(on(([(setq v )V Lol 2)V " loael 2)7 lpael 1) — ako caddr /
op 1s the definition store, o, is the store before evaluating = and o, the final store. There is no connection

between op and o,,: the first one was frozen at module definition time while the second is the run-time store.
Therefore no modification of ¢, can affect the meaning of programs within op. We use [ and | to delimit quasi-
syntactic elements. They do not have any meaning, they only serve to delimit elements of Value that are considered
as program text.

The other rules for £’ follow a similar pattern.

3.9 Syntactically Recursive Programs

The result of a macroexpansion is a value. This value may greatly differ from an usual form: it can be a
DAG or even contains cycles. Consider for instance the two examples: (defmacro snoopy (&rest forms)
‘(progn ,@(mapcan #’(lambda (form) ‘(,form (printf ".")))
forms)))
(defmacro while (&whole form cond . body)
(labels ((displace (old new)
(setf (car old) (car new))
(setf (cdr old) (cdr new))
0ld))
(displace form ‘(when cond (progn . ,body) ,form)))

The snoopy macro when invoked will return new forms that will probably share the representation of the
subexpression (printf ".") i.e.DAGS. That will cause no harm. The other macro is more subtle since it generates
cyclic forms in fact syntactically recursive forms. Most compilers will be defeated in trying to compile such forms.
A compiler might memoize expressions to compile and convert syntactic fix-points to semantic fix-points when
compiling the same expression in congruent lexical contexts, but this would be unusual. For example: (while «
) may be considered as the fix-point of the syntactic function from Form to Form:

A7 [(when o (progn 3) m)]

and may be converted to the fix-point of (Lambda (®) (when o (progn 5) (®))) that may be compiled
as: (letrec ((& (lambda () (when o (progn 3) ($)))))



DAl 1 — Modules, Macros and f.vaiuation — DUitAl' 1 10

(®))
The validity of this particular example is easy to see, but it is also a general result. An exposition of the argument
for the pure A-calculus may be found in [Stoy, 1977, page 182]. The trick is to consider the valuation function & to
be defined on the domain Form which besides being a syntactic domain may be defined as:

Form = Id varlable references
+ Id x Form assignment
+ Id* x Form abstraction

+ Form x Form* combination

By this domain definition, syntactically recursive programs are now elements of Form. The equations for &£
define a functional A£.©(€) which is continuous: & exists and is its least fix-point. We can therefore denote a
constructed value — an element of Value — with an element of Meaning. This result should not be surprising
to Lisp programmers since a computed value can be processed by an interpreter even if it is syntactically recursive
and denotational semantics may be (restrictively) viewed as the art of writing language interpreters in a very sparse
language: the A-calculus.

We have not considered the ill-formed forms, which are not members of the Form domain, such as this:
(let ((form (list ’setq x)))
(setf (cadr form) form) )
— (setq (setq (setq ...)))
Note also that since a value in Value is made of a finite number of dotted pairs and that only a finite number of
syntactic forms exist then it is decidable to check the syntax of elements of Value.

The current solution is to ignore such cyclic forms i.e.the compiler loops and the user has to kill its compilation.
Since no good programs are known to be only expressible by means of syntactically recursive programs, it seems
luxurious to enable a compiler to process these forms. Note that interpreters also ignore cyclic forms since this is
not a problem for them. Thus if one wants to have a perfect identity between a compiler and an interpreter, one
has to deal with syntactically recursive forms which imposes an heavy burden on the compiler.

3.10 Mixing Macroexpansion Time and Run Time

Another problem with macros is that they are needed at module definition time but must not be needed anymore at
run-time. The trouble does not lay with with-syntax since its semantics is clear and only restricted to the module
definition time. The result of the macroexpansion, say (€p,op), must not need anything related to the resources
that were acted during macroexpansion. If analysing the special forms that may appear in the fully expanded body
of the module, one can see that only one possible connection exists: the quotation. The quotation introduces a
immediate datum: a S-expression. If this datum is a dotted pair, it has to be considered in its associated store and
that connects the run-time store with the module definition-time store.

Several solutions exist to break this connection. A first one is to consider the definition store as immutable and
to arrange the datum to be constructed in such a way that it cannot be mutated: that introduces new types such as
immutable dotted pairs. A second solution is to consider that one can only quote immutable data such as numbers
or symbols. Therefore a dotted pair has to be explicitely rebuilt at run-time if one wants such a constant. In such
a world, to write *(a. ) is equivalent to ‘(,’«. ,’3). We retain this solution which in fact corresponds to
the reality of module compilation where constants appearing in a module have to be rebuilt into the store where
the module is loaded.

The final definition for the quotation is therefore:

5'([(61110'56 €D)-|;O'D)Vm/JmpmO'm(smK:m =
sumecase ¢p
Id : km(ep, om,6m)
Number : Ky (ep, Om, ém)
otherwise : wrong(“Incorrect quotation”)
endsumcase

where ¢p = op(op(([(quote €p)])V™"™ | puicl 2)Val"elpai,l 1)— ako cadr !

3.11 Formal Semantics of Macros

The solution we propose along these sections is to insert macroexpansion during module definition. The macroex-
pansion is performed by an initial macroexpander which aim is to find with-syntax syntactical forms and to
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perform the needed walking according to these local syntaxes. The result is a neat expression only using the
standard special forms. The denotation of defmodule thus becomes:

M[(defmodule v ¢* v} m)]pum=
if pm (V) = modenv-module-not-found

then if (CZ[*])(tm) — check importations
then (incorporate[n])(cinit,
)\Q’O’i.
macroezpand(< ¢, macroezpand >,
Ji,
Sinit,
)\|_7l'—| op 6D-
let v/ = LV['] — extract local variable names from importations
and v; = FV/([7],0p) — eatract free variables from the body
in if CE[vvivy — check exportations

then i, [v — make-module' (v, o*, v}, v}, v}, [7], pm)]
else incorrect-module

endif
else incorrect-module
endif
else incorrect-module
endif
make-module' (v, 1*, v}, vi vl [Tl pm) =
<vi, — list of exported variable names
A oibiki . — module initializer
(LD (pm, 01, 65, — load unloaded imported modules
A gc10c16et o
let p = (R[¢*])(éc1) — retrieve imported bindings
in augment — locations(zx}“,p, O, — extend with proper bindings
Apo . (E'([x],oD) (¥, tm, p, 0,81, — evaluate the body
A €0202000 « Ki(€c2, Oc2, bea[v — p])))),
Aok - (E'([7],00)W, pim, 6i(V), 00,61, 1) > — module reinitializer

Macroexpansion takes place right after checking imports and computes the expanded body of the module — an
element of Value. The semantic function incorporate (as used in the start-module semantics) takes the text [7]
and converts it into a value ¢; with a store o;, where it is macroezpand-ed into [7] in op. The semantic function
macroezpand is an element of Fun and as such its application is not guaranteed to terminate. We denote modules
in the obvious way, that is, we associate a A-term with the text of a module, although we do not denote forms
but instead provide an interpreter £’ for elements of Value. Since the expression to interpret is closed in op and
cannot be altered, it can be compiled — translated[Kelsey & Hudak, 1989] — into a more efficient code: &’ is
simply partially evaluated (or constant folded) with respect to [7] and op. Note also that self modifying programs
are not possible in that model nor are quotations (see [Queinnec 90] for such a model).

3.12 Variants

On the practical side, it is often important to export from a module functions and macros altogether. Of course
they do not have a similar status since a macro cannot be applied since it is merely syntax but the user should not
be too much aware of the nature of the exportations. The main reason is that macros are used inside with-syntax
while functions or variables are imported in the importation clause. We thus propose a new importation (and
symmetrically also, exportation) directive:

directive ::= (syntax directive)

The meaning of the syntax directive is to declare that the locations produced by the inner directive
contain macros i.e.syntax modifiers. When all importations are collected, syntactical ones are extracted and
composed with the initial macroexpander as if they were put in a serie of implicit with-syntax embedding the
whole body of the module. This body itself is considered as embedded in an implicit progn. In other words
the two following modules are equivalent: (defmodule M (defmodule M
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(syntax (only (push-macro) (union)
(expose standard-macros) )) (expose M)
(expose M) (with-syntax (standard-macros push-macro)
.) o))

The imported bindings used for syntax are of course removed from the importations since they must not be kept
at run-time. In the previous example, module M does not require module standard-macros after macroexpansion.
Since exportations and importations are symmetric, one can also export a function as a syntax modifier
i.e.amacro. One can then impose to view a function as amacro outside. For instance: (defmodule standard-macros
(expose Library)
(syntax (expose standard-macros))
(defmacro push (item place)

e )
o)
In the standard-macros module, syntax modifiers are defined and exported as syntax. The user has therefore

no means to retrieve the expander of push, she can only use push as a syntactical tour-de-main.

3.13 Conclusions on Macros

We longly analyse various aspects of usual macros and provide much examples of their power and dysfunctionment.
We generalize macros to be special code-walkers converting forms written with a local syntax into expressions of
the pure language. An unique feature is provided to introduce local syntax: with-syntax. Macros do not exist
per se but appear as syntax modifiers i.e.functions acting on syntax.

This approach has a great benefit since it clearly separates module-definition-time where macros are expanded
and run-time from which macros are excluded. The cost is on the semantical side since we abandon denoting
syntactical programs in favor of denoting values. We reestablish an interpreted semantics and underline the difficulty
of ignoring the processor (compiler or interpreter) when processing syntactically recursive forms. Paradoxically the
gain is semantic since now we gain a macro model where we know what happens.

The only restriction is that we cannot use macros inside the module where they are defined. We will see in the
next section some ways to alleviate this restriction.

By the way the antique explanation of macros was “functions that do not evaluate their arguments but doubly
evaluate their result”. Our description makes clear that the two involved evaluations belongs to different modules
(the first one is performed in the module where the macro is defined while the other is performed in the module
where the macro is called) and therefore are unrelated.

4 Dynamic Evaluation

&' is the explicit Lisp interpreter. It seems easy then to offer an eval facility. eval permits the dynamic synthesis
of programs and thus demands the presence of at least an evaluator in applications which use eval. eval is one of
the most typical features of Lisp but untamed it offers many nuisance. It is our aim to define a kind of domesticate
eval that must not break the module system nor the macro feature. Moreover its cost must only be supported
by its users. We will see in this section after a short analysis of eval features, the semantics of eval and some
interesting uses of it.

eval allows to dynamically synthesize new code and to evaluate it. eval can be provided either as a function
or as a special form.

If eval is a function and if we do not change the previous denotation rules, eval cannot capture the current
lexical environment. The argument of eval will then be evaluated in the environment where eval was defined —
that is, in the top-level environment of the module to which it belongs. The expression being evaluated can only
use the resources that are visible from the eval module, which excludes any user resources. This fact makes such
an eval practically useless.

If eval is a special form, it could be defined to capture some environment. The first solution is to offer
what might be called eval-in-current-context. The parameter of this kind of eval will be evaluated in the
environment of the call to eval. This solution clearly requires that all intermediate compilation structures
must be retained for each place where an eval form occurs. For instance: ((lambda (x y) (eval x))

’y ’foo ) — foo
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In this example the name of the visible bindings x and y must be kept in order to transparently evaluate any
expressions. eval-in-current-context may be viewed as a sort of reciprocal of the quotation since (eval (quote
«)) is, in any context, totally equivalent to a.

The latter sort of eval is very costly and many Lisp systems prefer to offer a different eval which only capture
the top-level environment of the module in which the eval form appears. A more appropriate name for that eval
is eval-in-current-module or eval/cm for short. The compiler must still be present in any application which
uses eval but only the symbol table of the current module must be retained. Moreover this eval feature recovers
a functional definition and does not need anymore to be a special form. We therefore propose to keep this facility
and to define it more precisely.

4.1 Formal Semantics for eval/cm

The formal semantics of eval/cm is simple:

E'([Ceval/em ™)), 00 )VmbmPm OmbmEm=
E'([m],00)Wm s Bms Pms Oms 0my A €c0cbe « E'([ec], 0c)Vm, fimy Om(Vm ), 0c, bc, Km)
where [7] = op(op(([Ceval/em TV |puicl 2)7 " pucl 1)— ako cadr !

Note the use of the toplevel environment of the current module 6,,(vp) when evaluating the argument of
eval/cm [e.].

It is also necessary to revise the formal semantics of reference and assignment since it is possible now to
dynamically synthesize references or assignments on never seen before variables. These variables will be added to
the toplevel of the module but will not be modified if the module is reloaded. In fact to augment the toplevel
environment of the module does not change the exportations of the module and thus makes invisible to the outside
these new bindings. Furthermore these new bindings cannot affect the body of the current module, they must be
considered as grafted onto the module. Fortunately for code generation, the ex/importation clauses that set the
mutability of the binding can be used for inlining or constant propagation even if the module uses eval/cm.

The modified equations for reference and assignment now test if the variable is defined before taking an action.
The following equations are given in terms of £ rather than &’ since it is more readable.

EWIVmbtm pmOmOmbkm= 1if pm(v) = lezenv-location-not-found
then if (6, (vm))(v) = lezenv-location-not-found
wrong(“Inexistent variable”)
then £m(0m(6m(¥m)(V)), om, 6m)
endif
else km(om(pm(V)), Om, bm)
endif

E[(setq v m)|VmbmPm OmOmEm=
EIm)(Vm, Bms Py Omy Omy A €000 o« if pm (V) = lezenv-location-not-found
then xp(eq, o] — ec], b6e[vm — b:(vm)[v — «]],)
where a = new-location(o,, 1) )
else km(ee, oclpm (V) — €c],6.))
endif

A variable is first looked up in the lexical environment py, then in the toplevel module environment é(vy,). Note
that this semantics differentiates two erroneous situations: when a variable does not exist or when it exists but is
undefined.

4.2 The Language of eval/cm

What kind of expressions can be submitted to eval/cm 7 Since eval/cm is tied to a module, the syntax of its
argument should be that of the module. This is particularly clear with respect to the variables defined at the
toplevel of the module but is unclear with respect to the macros that were available at the point where eval/cm
appears. Since we do not want macros to be kept at run-time we restrict the argument of eval/cm to be a pure
expression of the language still able to use all the variables of the module. If one wants to use a special syntax before
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submitting expressions to eval/cm, then one has to call explicitely the necessary macro-walkers before invoking
eval/cm.
An interesting application is for a module which defines a toplevel loop. Consider for instance: (defmodule toplevel-
(expose library)
(immutable (only (start) (expose toplevel-loop)))
(set! start (lambda ()
(display "7 ") (newline)
(display (eval/cm (read)))
(newline)
(start) )) )

The start entry point in the module toplevel-loop starts an interactive loop requiring an expression from
the user and printing its value. The expression must be in the pure language and can use all the library as well
as the start function. All evaluations will be performed in the visibility of this module and cannot alter start
because of its immutability but allow to augment the module with new variables which will be mutable. Note that
these new bindings can also alter the mutable locations imported from the 1ibrary if any. Therefore all specialized
modules like the format module (see CoMMON LisP) can have been compiled with the higher level of optimization
since not containing call to eval/cm, they cannot be altered in a blind way.

To submit expressions in the pure language is rather crude. One can dream to benefit from some macros.
The fix is simple although it will imply to load at run-time the modules containing the needed macros. We
just write: (defmodule toplevel-loop-allowing-some-macros

(union (expose library) (expose standard-macros))
(immutable (only (start) (expose toplevel-loop-allowing-some-macros)))
(let ((walk standard-macroexpand))
(set! start (lambda ()
(display "7 ") (newline)
(display (eval/cm (walk (read) walk)))
(newline)

(start) )) ) )

The standard walker is given by the value of standard-macroexpand from the standard-macros module and
is the composition of all specialized walkers for the usual macros: let, letrec, case ... all the so-called derived
syntazes of R3RS [Rees & Clinger 1986].

4.3 Local Macros

Another interesting application is local macros. In many Lisp systems it is possible to define a macro and to use
it after it was defined. The following module allows that: local-defmacro is a normal macro that evaluates
the associated expander in the module where local-defmacro is defined and extends the syntax to now know
this new expander. This module is :(defmodule local-defmacro
(union (expose standard) (expose standard-macros))
(syntax (only (local-defmacro) (expose extended-syntax)))
i 3 (local-defmacro name (variables..) body)
(set! local-defmacro
(lambda (syntax)
(letrec ((local-macros
(list (cons ’local-defmacro
(lambda (e m)
(if (and (pair? (cdr e))
(pair? (cddr e)) )
(let ((name (cadr e))
(variables (caddr e))
(body (cdddr e)) )
(set! local-macros
(cons
(cons name
(let ((fun (eval/cm (standard-macroexpand
‘(lambda ,variables . ,body)
standard-macroexpand ))))
(lambda (e m)
(m (apply fun (cdr ¢)) m) ) ) )
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local-macros ) )
‘#t )
(error ’local-defmacro-syntax) ) ) )) ))
(lambda (e m)
(if (pair? e)

(let ((expander (assq (car e) local-macros)))
((if expander (cdr expander) syntax) e m) )

(syntax em) ) ) ) ) )

The local-defmacro syntax modifier introduces a new syntax which on each form it walks, check if its
car is the name of a local macro and expands this form if this is true; otherwise it looks like the previous
syntax. Local macros are introduced by the first local macro which name is local-defmacro. Let us give
an example of this module: (defmodule use-of-local-defmacro

(union (expose library) (expose local-defmacro))
(union ...)

(local-defmacro list args
(if (pair? args)

‘(cons ,(car args) (list . ,(cdr args)))
0D
(set! names (list ’car ’cdr ’cadr ...))

)

An useful macro named 1ist was defined and then used in the rest of the module. The language of the expander
of 1ist is of course the language allowed in the local-defmacro-module i.e.the pure language augmented with
the standard macros.

4.4 Conclusions on Evaluation

We think that three main problems exist with respect to evaluation. The first one it tied to denotatonial semantics
since to introduce eval violates compositionality, one of the tenets of denotational semantics. Since we saw that to
introduce macros already enforces us to devise £, a semantical interpreter of values in store, the evil was already
done. The second problem concerns the meaning of eval. We think that eval/cmbest fits with our module proposal
and is not far from the usual practices. The third problem is related to the cost of eval/cm since it involves keeping
an evaluator in any applications using a module containing a reference to eval/cm plus the symbol tables of the
toplevel environment of these modules. An evaluator can range from a clever compiler (4 MBytes) to a modest
interpreter (50 kBytes). Symbol tables are generally never stripped off since the debugger needs them and the
confusion between a variable and a symbol is always there in implementations. We thus think that the cost is not
too much since probably the major use of eval/cm will be for toplevel loops and advanced macro programming.
On the negative side we will mention the very nature of eval/cm which acts like a function and is denoted
as a function thanks to the parameter containing the name of the current module in every denotations.
eval/cm may also be viewed as a keyword which meaning varies from module to module since it captures
a different toplevel environment at each time. The distinction is subtle but real since a keyword is only
syntax while a function is a first class object. In this latter case one may wonder what is the result of:
(defmodule wonder

...
...
(eq eval/cm ;18 eval/cm

(progn (loadmodule M) ;always equal to
eval/cm ) ) ) s itself ?

5 Conclusions

We define a primitive module system with a clear semantics on top of a simple Lisp-like language. Fortunately,
although primitive, it seems to embody all the right operations for a convenient practical model after dressing in
new syntax. The model also extends comfortably to accomodate macros and a precise semantics for macros with
predictable effects. We also show that the model can be extended to support the eval facility, which can then be
given a precise meaning.
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A Semantic Utility Functions

Pinit= A v . lexenv-location-not-found — The initial lexical environment
binit= A v . not-loaded — The initial dynamic load environment
Winit= A v . modenv-module-not-found — The initial module environment

C&= Aviviyl . if v* =<> — Check exportations
then true
else (v* | 0€vy)V (v | 0€y)ACEV™ T1]
endif

CI[C v vr v) *]= — Check importations
A vpveuit® o A po (V) = modenv-module-not-found) A (vy € p(vm) | 0) A (CZ[e*]) (1)

CIMl= A p . true
L[] : ModEnv x Store x LoadEnv x Cont — Answer — load imported modules

LICvm v v) )=
Avprpyp* o A pobe . let 0= A ce.o.8, . (L)) (g, 00, 86, K)
in if 8(vy,) = not-loaded
then (u(vm)| 1)(o,6,0)

else 0((boolean-true), 1V, 0,6)
endif

L[l= A pobdk . &((boolean-true), TV, 0,6)

LV[]:Id* — extract local names out of importations

LV[C vm vr 1) K= A vpmrpre® o <y > 8LV
LV[]= <>
RICvm vr v) &= Avpreve* o A6 (R[] [vi — (6(vm))(vr)] — Retrieve imported bindings

RIO= A6 . pinit

augment — locations= — Augment the toplevel environment with the proper part
Avipol . if vy =<>
then 0(p, o)

else if p(v} | 0) = lexenv-location-not-found
then let a = new — location(o)
in augment — locations(vi t 1, p[v} | 0 — o], ola — store-undefined-valuel, 0)
else augment — locations(u} 71,p,0,0)
endif
endif

FV: not given — FExtracts free variables out of a form

new-location, new-locations: implementation dependent



