Graceful disconnection

Christian Queinnec
UPMC - LIP6
E-mail: Christian.QueinnecQlip6.fr

Luc Moreau
University of Southampton
E-mail: L.Moreau@ecs.soton.ac.uk

A distributed object system allows objects to be communicated from site to site
disregarding their physical locations. Communicating objects often leaves a trail
homing to the site that owns the original object. Short-cutting these trails reduces
the number of “zombies” i.e., sites that are part of the trail but do not need
the object for themselves. This paper proposes an algorithm that allows a site
to disconnect gracefully that is, without global network synchronization. This
algorithm focuses on the proper treatment of zombies.

1 The Intention

Distributed object systems offer, under various names, a notion of remote
pointer that allows one object from one site to refer to any object of any other
site. Although similar in intention to regular in-memory pointers, the nature
of distributed computing confer remote pointers some peculiarities that must
be coped with. First, the failure of a site may prevent a remote pointer to
be dereferenced into the pointed object. Second, dereferencing a pointer is
not an instantaneous operation — to read/write the content of or, — to send
a message to a remote object, takes a variable time. Third, managing the
memory of a distributed therefore multi-tasks application may only be achieved
with garbage collection (GC).

When used by multiple simultaneous users, distributed systems allow sites
to join or disconnect from the common distributed object space. The goal
of this paper is to explain a technique allowing a graceful disconnection. By
graceful, we mean that the technique requires the collaboration of some sites
to ensure the safe disconnection of sites but does not require a global synchro-
nization.

Most of the time, an object is owned i.e., managed by a single site, its owner
site, most often its birth site. When an object is created and communicated
to other sites, it leaves a “trail”’%°! leading to its owner site. This trail is
made of the data required to manage these remote pointers, more precisely
these are the entry/exit tables"@°2 or, the stub/scion pairs®?F%2 or for the
present paper, the send/receive tables”°™?8%. For a given object, these trails

1

form a diffusion tree, the root of which is the owner site. This diffusion tree is
used for GC with the following rules: (i) when a leaf is recycled, the branch
that leads to it is cut, (7) when a node has no branches, it becomes a leaf,
(i45) when the root becomes a leaf, the original object is no longer reachable
from other sites.

While the diffusion tree is a sound idea, it creates the possibility of “zom-
bies” where a site only serves to maintain the diffusion tree even if it has no use
of the remote object itself. A zombie is defined as a node, which is not a leaf
nor the root of the diffusion tree and which has no use of the object (except
for GC purpose). Zombies may form long chains within diffusion trees whose
fringe only is active. Short-cutting these trails to reduce zombies was first ad-
dressed by Plainfossé®PF92 but really and elegantly solved by Moreau°r98?,
While removing zombies seems desirable, this is not always so since this aug-
ments the branching factor of owner sites (if every trail is shortcut all leaves
are directly attached to their owner site) which may not have the necessary
resources (number of TCP connections or memory space). Another problem is
the presence of fire-walls that prevent short-cutting since they impose diffusion
trees to pass through them. Slow connections are a third problem since short-
cutting may augment their number and perturb caching policies. In all these
cases, the diffusion “trees” are not simple “shrubs” and may contain zombies.

When a site wants to disconnect from the net of active sites, it has to
migrate all the objects it owns (a migration protocol such as Moreau’s™ 798¢
may be used) so that the other sites may still use them. It has to delete all
the references to remote objects it no longer uses since it is disconnecting.
Eventually it has to take care of all its zombies. This paper addresses this
single point and proposes a solution that involves a limited number of sites.

The essence of the algorithm is quite simple, see Figure 1. When a site S
wants to disconnect, it sends to the owners of its zombies a disconnect message
and then immediately disconnects itself: that’s all for it! Upon reception of
a disconnect message, the owner sends a disconnected message to inform the
parent of the disconnecting site S of that disconnection.

Meanwhile, the children sites of S are orphan and their diffusion trees
are no longer valid since they pass through the disconnected site. In order to
readjust their diffusion trees, the children sites send reconnect messages to the
owner which then become their new parent. The initial disconnect message
told how many reconnect messages the owner will receive.

An object becomes useless when its diffusion tree is reduced to the owner
however there is an additional condition coming from disconnecting sites: dis-
connect messages must be balanced by reconnect messages. The next section
will detail this algorithm more thoroughly.

2

\] Siltseconnectlng [] parent site \::\\\ [| owner site

P
children sites
/ ~ _ disconnected -

@ di?séo_nnect

Figure 1: The disconnection of S

2 The Algorithm

This Section describes the algorithm with the conventions of Moreau °r98e
i.e., as transitions of a state machine. With this terminology, inherited from
Nexus" K796 reference to objects are named global pointers aka GP.

All sites have a send table where the count of copies sent to other sites are
kept. There is also a receive table where the GPs received from other sites are
kept. A GP may occur at most once in a receive table.

Every object is owned by a site. Every object that appears in the send table
of its owner site is associated to a vector (indexed by sites) of disconnection
counters. Disconnection counters hold positive or negative integers and are
essential for our algorithm since they hold the balance between disconnect and
reconnect messages.

Messages from one site to another site are ordered and processed in the
order of their emission.

Following Moreau’s formalism °"%8¢ the distributed object system is char-
acterized, with respect to the GC, by a configuration made of the send tables,
the receive tables, the diffusion trees, the disconnected sites, the disconnec-
tion counters and the queues of in-transit messages: see Fig. 2 for the precise
representations.

Diffusion trees are created or extended when the reference of an object (a
GP) is copied from one site to another. This copying action and its conse-
quences on the configuration are represented by the two transitions make_copy
and receive_copy, see Figure 3. make_copy sends a copy message while re-
ceive_copy receives it.

When a reference becomes useless on a site i.e., when a local GC recycles a
GP, the delete and receive_dec transitions describe the evolution of the config-
uration, see Figure 3. The delete transition sends a dec message to the parent
site which receives it with receive_dec. This, in turn, may lead this parent site
to also recycle the GP.

When a site s wants to disconnect, it has to migrate the objects it owns on
another living site then it recycles the GP it holds as leaves. These aspects are
not described here, we concentrate on zombies i.e., GPs unneeded by s whose
diffusion tree pass through s. For all these GPs, see the disconnect transition of
Figure 4, s sends a disconnect message to the owner of the GP telling (i) how
many reconnect messages the owner should expect (this is the current counter
of the send table of s concerning this GP), (%) who was the parent of s (this
is to help the owner to prepare its disconnected message, see below).

Receiving a disconnect message is described by the receive_disconnect tran-
sition of Figure 4. With respect to a given GP, when an owner site Syyner

4

S = {50,81,---,8n.} (Set of Sites)
G = {9po.9p1,---,9Pn,} (Set of Global Pointers)
M = copy:G—o>M | dec: G > M (Set of Messages)
| disconnect: G xS x IN = M
| disconnected: G x S - M
| reconnect:G xS - M
| reconnected : G x S - M
K = 8§x8— Queue(M) (Set of Message Queues)
ST = S§xG—-IN (Set of Send Tables)
RT = SxG— Bool (Set of Receive Tables)
DT = § — Bool (Set of Disconnected Sites)
PT = SxG—S§ (Set of Diffusion Trees)
DC = GxS—-Z (Set of Disconnection Counters)

Characteristic variables:

seS, GPegG, meM, keK, send T € ST, recT € RT,
parent € PT, disconnectp € DT, dc € DC.

Figure 2: Configurations

make_copy(s1, 52, GP) :
s1 # 82 A recT(s1,GP) A —disconnectp(s1)
— { sendT(s1,GP) :=send T(s1,GP)+1
post(s1, s2,copy(GP)) }

receive_copy(sy, sz, GP) :
first(k(s1,s2)) = copy(GP) A —disconnectp(ss)
— { receive(si, s2)
if rec.T'(s9,GP) then
{ post(sz, s1,dec(GP)) }
else
{rec.T(s2,GP) := true
parent(Sa, GP) := s
send T(s2,GP) =0} }

delete(s, GP) :
send T'(s,GP)=0 A rec.T(s,GP)
A owner(GP) #s N —disconnectp(s)
— { rec.T(s,GP) := false
post(s, parent(s,GP),dec(GP)) }

receive_dec(sy, s2, GP) :
first(k(s1,s2)) = dec(GP) A —disconnectp(ss)
— { receive(s, s2)
send T (s2,GP) := send T(s2,GP)—1 }

Figure 3: Regular transitions

disconnect(s, GP) :
s # owner(GP) A —disconnectp(s)
— { disconnectp(s) = true
post(s, owner(GP), disconnect(GP, parent(s, GP), send T (s,GP))) }

receive_disconnect(sy, s, GP, s3,n) :
first(k(s1, s2)) = disconnect(GP, s3,n) A sy = owner(GP)
— { receive(sy, s2)
dc(GP, s3) := dc(GP,s3) +n
post(sz, s3,disconnected(GP, s1)) }

receive_disconnected(sy, s2, GP, s3) :
first(k(s1, s2)) = disconnected(GP,s) A s; = owner(GP)
— { receive(sy, s2)
send_T(s2, GP) := send T (s3,GP)—1 }

Figure 4: Disconnection related transitions

reconnect(sy, s2, GP) :
s1 # owner(GP) A parent(si,GP) = s2 A s2 # owner(GP)
— { post(s1,owner(GP),reconnect(GP, s3))
parent(sy, GP) = owner(GP) }

receive_reconnect(sy, so, GP, s3) :
first(k(s1,s2)) = reconnect(GP,s3) A sy = owner(GP)
— { receive(sy, ss)
dc(GP, s3) := de(GP,s3) — 1
send T(s2,GP) := send T(s2,GP)+1 }

Figure 5: Reconnection related transitions

receives a disconnect message, it increments the disconnection counter related
to the disconnecting site s with the former content of the send table of s:
this number represents how many orphans s creates. Then, syuner sends a
disconnected message t0 Sparent, the parent of s whose identity appears in the
disconnect message, to inform sp,rent Of the disconnection of s.

At the reception of the disconnected message, the parent of the now dis-
connected site s adjusts its send table by removing s from its children. The
previous behavior makes sense in a reference-listing GC, here, in the case of a
reference-counting GC, the receive_disconnected transition (see Figure 4) shows
that we only decrement the send table.

The disconnect and disconnected messages are somewhat similar to the
inc_dec and dec messages of Moreau’s protocot°"%82 However the disconnect
conveys an additional information that will be used when handling reconnect
messages.

The second part of our protocol is concerned with the orphans that have
become orphans. Their diffusion trees are incorrect since they pass through
the now disconnected site s. In this situation and since they know the owners
of their GPs, they trigger the reconnect transition whose goal is to graft their
diffusion trees to the owner, see Figure 5.

With respect to a given GP, when a site s.pi4 discovers that its parent site
s is disconnected, it sends a reconnect message to the site that owns the GP
in order to make this site the new parent site of s.pi;4- The reconnect message

8

tells that s, the parent of s¢pi4, is disconnected so the owner site may update
the disconnection counter of s which now has one orphan less. No orphans (for
that GP) means that the disconnection of s is now completely repaired.

The disconnect and reconnect messages are harmlessly concurrent. Only
one disconnect message may be emitted (since the emitting site is now discon-
nected for ever (if it ever comes back, it will have to bear another different
identity). The effect of disconnect message is annihilated when the appropriate
number of reconnect messages is received: at that time, the consequences of
the disconnection are completely propagated since all the children of the now
disconnected site are grafted onto the owner site. Meanwhile, the reconnect
messages may be freely intermixed with or even arrive before the single dis-
connect message. The disconnection counter associated to s becomes null iff s
is disconnected and all its children sites are reconnected.

3 The Variant

Disconnection counters may easily be compressed since it is only necessary
to record non null values. Moreover non null values only appear while sites
are disconnecting therefore the size of the disconnection counters is propor-
tional to the number of currently disconnecting sites and not to the number
of living sites. Once a disconnection counter reaches zero, its associated site
is completely disconnected and all its orphans are re-rooted: the disconnec-
tion counter is no longer useful and may be recycled. In Scheme-ish parlance,
disconnection counters may be implemented by a kind of association list.

4 The Related Work

Piquer and Visconti”V?® present indirect reference listing a variant of indirect
reference counting that maintains the list of sites where pointers are copied in
addition to the number of their copies. Using this information, they present
the skeleton of a protocol to shutdown hosts. In essence, the node that wishes
to disconnect communicates the list of its children to its parent p, which in
turn informs each child that its new parent is p. Their algorithm maintains
the structure of the diffusion tree, but it forces communications between the
children and the parent of the disconnecting node. On the other hand, our
algorithm does not require reference listing and is more lazy, because only
the disconnecting node and the owner are initially required to communicate;
children are involved in the disconnection protocol only when they have to
communicate with their parent (when sending a dec message for instance).

If communicating with the owner turns up to be too centralized, one can
adopt a hierarchical reorganization™ 798 Sites are grouped by domains, or-

9

ganized in a hierarchical manner. In each domain, a site is assigned the role
of a gateway: a gateway acts as a representative of the outside world within
a domain, and symmetrically it represents the domain in the outside world.
Therefore, instead of sending the disconnect message to the owner, it would be
sufficient to send such a message to the local gateway.

5 The Conclusions

We believe that there are two main results in this paper.

The first one is technical: this is the idea of disconnection counters, a
kind of vector-like reference counter. Moreover, numbers may be negative to
balance not yet received messages.

The second result is the concept of graceful disconnection where a site
wants to release its share of the distributed memory it was part of. We propose
an algorithm that looks like Moreau’s”°78¢ inc-dec protocol except that the
disconnecting site (the short-cuttee) is the one that initiates the algorithm.

6 Acknowledgements

This research was partially funded by EPSRC grant GR/M84077 and Alliance
98096.

[FKT96] Tan Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach
to Integrating Multithreading and Communication. Journal of Parallel
and Distributed Computing, 37:70-82, 1996.

[LQP92] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting
the world. In POPL ’92 — Nineteenth Annual ACM symposium on
Principles of Programming Languages, pages 39-50, Albuquerque (New
Mexico, USA), January 1992.

[Mor98a] Luc Moreau. A Distributed Garbage Collector with Diffusion Tree Re-
organisation and Object Mobility. In Proceedings of the Third Interna-
tional Conference of Functional Programming (ICFP’98), pages 204215,
September 1998.

[Mor98b] Luc Moreau. Hierarchical Distributed Reference Counting. In Proceed-
ings of the First ACM SIGPLAN International Symposium on Memory
Management (ISMM’98), pages 57-67, Vancouver, BC, Canada, October
1998.

[Piq91] José Miguel Piquer. Indirect reference counting: A distributed garbage
collection algorithm. In PARLE ’91 — Parallel Architectures and Lan-
guages Europe, pages 150-165. Lecture Notes in Computer Science 505,
Springer-Verlag, June 1991.

10

[PV98§]

[SDP92]

José M. Piquer and Ivana Visconti. Indirect reference listing: A robust
distributed gc. In Parallel Processing (EuroPar’98), number 1470 in
Lecture Notes in Computer Science, pages 610-619, Southampton (UK),
September 1998.

Marc Shapiro, Peter Dickman, and David Plainfossé. Robust, dis-
tributed references and acyclic garbage collection. In Symp. on Prin-
ciples of Distributed Computing, pages 135-146, Vancouver (Canada),
August 1992. ACM.

11

