DMEROON
Overview of a Distributed Class-based
Causally-coherent Data Model *

Christian Queinnec*™
Ecole Polytechnique & INRIA-Rocquencourt

Abstract. DMEROON is a library of C functions that provides a data
model above a coherently distributed shared memory. DMEROON allows
users to statically or dynamically create new classes, to dynamically in-
stantiate these classes and to dynamically and coherently share the re-
sulting instances over a network. DMEROON automatically takes care of
representation and alignment, migrating and sharing objects, local and
global garbage collections. This document provides an overview of DME-
ROON.

1 Goals

These days, the net becomes more and more fundamental to nearly all the facets
of our professional life, both to use and to study. In the same time, programming
languages cease to stay the focal point of our attention. Although important since
they are still the mandatory means between machines and developers, their algo-
rithmical side tend to be marginalized in favor of their (tele-)communicational or
interoperability aspect. This is so because programming languages are generally
sequential-minded whereas the net is inherently distributed, more persistent but
able to fail.

API (Application Programming Interface) are now of paramount importance,
they play the intercessory role between developers and some set of functionalities.
API start as subroutines libraries but soon evolve to become complex universes
involving various kinds of tiny languages, communication protocols, data struc-
tures, programming invariants, computational models etc. Compare, for instance
curses and X!

Nowadays API nearly replace programming languages and propose new mod-
els of programmation with higher-level, richer, more complex but more special-
ized entities. Designing a good API may be compared to the design of a new
programming language but is often far more open and difficult since it encom-
passes far more aspects. For all these reasons, a good API must provide a clear

* Revision: 1.14 typeset on March 4, 1997 at 21:23 — PSLS ’95, Beaune (France),
October 1995.

** Laboratoire d’Informatique de I'Ecole Polytechnique (URA 1439), 91128 Palaiseau
Cedex, France — Email: Christian.Queinnec@polytechnique.fr This work has
been partially funded by GDR-PRC de Programmation du CNRS and by the
CEC/HCM VIM project.

model of the entities it allows to handle, control or customize. A formal speci-
fication or semantics is desirable but probably of extreme difficulty due to the
too numerous facets of the API.

Moreover we believe APIs to be potentially more able to synergize appli-
cations wanting to cooperate rather than parallel and/or distributed languages
that are, years after their inception, still not widely spread.

DMEROON addresses the problem of interoperability defined as the possibil-
ity of exchanging and sharing simple or complex data, their identity, relationship
and evolution. DMEROON provides a distributed shared memory (DSM) of struc-
tured objects. Shared memory is generally recognized as the simplest program-
ming model for distributed programmation. DSM allows developers to program
in terms of shared memory rather than in terms of messages, this difference
might be compared to the gap that exists between direct style and the low-level
Continuation Passing Style as used, for instance, in actor-based languages.

DSM is simpler but only if the provided coherence naturally fits the semantics
of the used programming language. DMEROON ensures causal coherency using a
lazy invalidation protocol (more generally, laziness is often used as a program-
ming technique inside DMEROON). DMEROON is tailored for wide area networks
and thus prefers to limit, for its own implementation, cyclic data, backpointers
and so forth.

DMEROON is class-based; objects have classes which themselves are objects
(obeying to the ObjVlisp (single inheritance) model and allowing reflection of
their structure). An object can be as simple as a float number or as complex
as, for example, a bytecoded Emacs package (a vector of bytes accompanied by
a number of unrestricted quoted Sexpressions). Objects are distributed on an
individual basis, can be remotely read, locally cached but are managed by a
single owner that sequentializes mutations.

From a programmer’s point of view (see figure 1), DMEROON allows to de-
fine classes of objects, to instantiate them, to read or write the fields of these
instances, to be connected with other DMEROON sites and to share objects with
these remote sites. The new and main characteristics of DMEROON are (i) its
comfortable data model allowing references (pointers), indexed fields and single
inheritance, (7i) the causality implying that every participating site observes a
coherent data state.

DMEROON has a very dynamic behavior i.e., instances and classes are mainly
built at run-time then moved to repositories to acquire more persistence. DME-
ROON is not encumbered with stub compilers, interface definition language etc.
DMEROON relies on reflection for its own self-description. DMEROON is offered
as an API and, to be worth of value, tries to satisfy additional constraints such as
hardware-, system-, language- and implementation- independence (the latest are
the most complex). The language into which DMEROON is incorporated is called
the support language. DMEROON tries as much as possible not to duplicate the
facilities offered by the support language: Memory Management and particularly
Garbage Collection (GC) is reused if provided and suitable.

.ﬁ HTML client
HTML server

Language X L] Language Y

API for X API for'y

O=— O =

DMeroon space O

API for X

Language X

Fig.1. DMEROON: a distributed shared memory of objects

Albeit DMEROON offers classes, it does not offer generic function nor method
invocation nor any control-related functionality. A generic function is an aggre-
gate of methods (functions or procedures), a data type which is not universally
understood. DMEROON is only a data model on top of which additional layers
can be built up, for instance, to implement a programming language. DMEROON
aims to be the smallest multi-language data model library.

This paper describes the current state of DMEROON, its computation model
(§2) and its entities (§3). A comparison with related work (§4) and a conclusion
finishes the paper.

2 Computing

Any running process incorporating DMEROON is known as a site. A site provides
a physically independent data space which is part of the whole DMEROON space.
The site is reflectively described by an instance of the Site class. These site
objects reify the perception of space. Any object created on a site is owned by
that site. The owner of an object manages it and, in particular, sequentializes
all its evolutions.

A program may follow a reference from a DMEROON object to another DME-
ROON object without being aware whether this latter object resides on the same

site or not. Conversely, any reference to a DMEROON object can be written into
a mutable reference-typed field of any DMEROON object. Once created, wide
and complex graphs of objects can be accessed from any site of DMEROON space.

An instance of the Site class has an information field holding a mutable
multi-level Association-list of DMEROON objects. These objects are said to be
published and may be accessed from any site. This public information is similar to
a kind of ftp site (or blackboard or Linda tuple space) where programs cooperate
by polling regularly (or according to some other user-defined protocol) the areas
where some interesting objects may appear.

All sites initially publish the reference of the world main DMEROON site pub-
lishing the source texts of DMEROON, other interesting sites, etc. This computa-
tion model enhances the WWW world with objects that are programmatically
usable and whose structure may be tailored to users’ needs.

Another computation model allows to send (a reference of) a DMEROON
object to another site. This allows to asynchronously send/receive objects. It
restricts communication to be point-to-point between two sites (or two applica-
tions or users standing behind these sites). With a reference, a site may access
the fields of the referenced object and consecutively all its offspring. Such an
exported object may encode a request such as a mail exchange, a file transfer
or a clock synchronization etc. More generally, this computation model provides
a message layer where exchanged messages are constrained to be DMEROON
objects over a shared memory. But to let DMEROON be aware of these commu-
nications allows it to maintain the coherency of the DMEROON space.

object Event loop
>=
_Object Application
internal /
object DMeroon
requests
DMeroon site

Fig. 2. Event loop on a site

With point-to-point communications, users may, for example, register a func-
tion that will be called on any received object (except DMEROON objects that

used for internal management, see figure 2). Users may then exchange objects,
decode them according to their class or content and perform what they ask for.
It is therefore possible to implement all kinds of protocols with the sole operation
of sending the reference of an object from one site to another one. DMEROON
appears as the ultimate distributed machine that, as any other machine, provides
memory management and information transfer.

DMEROON itself uses this mechanism for its own management. When a site
sends a request and waits for an answer, the “continuation” of that request is
another object containing all the data that are necessary for the resumption of
the request. This continuation object is reachable through the request object
and serves to identify the answer that matches it. The continuation object may
also appear as a place-holder for an expected returned value.

To have messages encoded as regular objects has some additional virtue that
may be exploited for fault-tolerance. Copies of sent objects may be kept on their
emitting site until reception is acknowledged: the sent object has a reference
onto the kept copy, the acknowledgment is simply achieved when the sent object
is received and reclaimed, the propagation of that reclamation will ultimately
collect the now useless copy.

We believe that DMEROON is appropriate for distributed symbolic computing
which is mainly characterized by (i) the ability to compute upon complex ob-
jects with involved relationship (therefore accompanied by an irregular control)
and (i) the ability to offer automatic memory management. DMEROON will
probably be used for experimental languages or applications saving them from
the burden of managing a distributed shared memory. This is possible since, to
be offered as a library with an API, allows DMEROON to be used in multiple
contexts without too many constraints.

3 Objects

DMEROON holds its name from MEROON [Que91], an object system for Scheme
which introduced a data model powerful enough to represent all Scheme values
including vectors and strings in an uniform framework. A DMEROON object is
a contiguous piece of memory containing the values of the fields of its class,
see figure 3. Fields may be regular or indexed without inheritance restriction. A
regular field holds a single value while an indexed field holds an ordered sequence
of values whose number of elements is determined at instance allocation time.
Since the kernel of DMEROON is written in C, DMEROON objects are physically
represented with the conventions (size, alignment) of the used C compiler.

3.1 Fields

All fields have a precise type. There are signed or unsigned fix numbers with spec-
ified range as well as float numbers and characters. There is also the reference
type that may hold a pointer to any DMEROON object whether local or not.

I malloc header I
and/or
| support language header I

DMEROON header
(instantiation link

I I
I I
I I
I I
I proxy) I
I I
DMEROON reference :Ir :
I first (regular-)field I
: second (regular-)field :
: size of third (indexed-)field :
I first value of third (indexed-)field :
: second value of third (indexed-)field :
[Hrm e I
: last value of third (indexed-)field |
: fourth (regular—)ﬁeld :
: ... other regular- or indexed- fields . .. :
L ————— o

Fig. 3. DMEROON instance example

Fields may have properties that are specified at class creation time. These
properties are inherited by subclasses without change. When a field is mutable,
the user is allowed to modify it. When a field is wvolatile, its content cannot
be cached and must be fetched any time it is read even if remote. When a
field is local, its content is only meaningful for the current site and therefore is
never transmitted. These properties may be arbitrarily combined. The volatile
property is mainly used for an immutable object whose content is modified by
the implementation: the time field of a Clock, for instance. The local property
generally qualifies secret (non exportable) fields of the implementation.

Indexed fields are essential: they allow to embed sequences of values con-
tiguously within objects. Sequences cannot be separated from their embedding
objects, they avoid intermediate references and are not transmitted indepen-
dently. DMEROON data model is particularly comfortable since, in addition to
regular records (dotted pairs for example), it allows to express vectors (sequences
of references) or strings (sequences of characters) as regular classes and not as
special primitive non-subclassable classes. The IcsLas language [Que93] is en-
tirely supported by the DMEROON data model and therefore does not hide the
structure of its basic values.

DMEROON’s API offers some accessors. It is possible to determine the length
of an indexed field, to read a regular or indexed field (the latter must mention
a correct index) and to write a mutable regular or indexed field. Mutation is

atomic; mutators come with two flavors: one returns the previous content of
the field (the initial value of a field is unspecified), the other just perform the
mutation and returns no value.

Fields are reified into Field instances describing the nature of the field (reg-
ular or indexed), the type of the field (and of its index if any), the class that
introduced that field and some precomputed information on how to access that
field. Field descriptors may be accessed through objects’ class.

Since access is performed through function invocation, it’s price is high but
this mechanism ensures that all read/write accesses are perceived by DMEROON
to ensure the coherency of the DSM.

3.2 Structure

DMEROON objects have a specific DMEROON header currently limited to two
references. The first one implements the instantiation link and is a pointer onto
the class of the object. The other one contains the data necessary for remote
access or, more precisely a reference to an Entry or Exit object as shown on
figure 4. These Entry or Exit objects are not visible from the user, they are only
used by DMEROON itself.

DMEROON is class-based, it only offers single inheritance since it is a well-
understood model with a clear and unambiguous semantics; multiple inheritance
would have required to choose among the possible choices for slot inheritance,
moreover full adherence to C++ was not felt to be an unavoidable requirement.

DMEROON’s API allows to obtain the class of any object. It is also possible
to check whether a class is a subclass of another one. Since classes are themselves
objects, they may be inquired as any other objects. A class has a name for debug
purpose (there is no predefined way to convert a name into a class), a sequence
of super-classes and a sequence of field descriptors as well as some precomputed
information describing its main characteristics (mutable, containing references,
etc.)

A peculiarity of DMEROON is that classes do not have a subclasses field
holding their subclasses. First, it avoids a mutable field, second, it removes a cycle
between classes and their superclasses, and third, it offers ubiquitous objects such
as Object the class at the root of the inheritance tree. Ubiquitous objects are
immutable and indistinguishable objects shared by all DMEROON sites.

Objects are central to DMEROON even without methods: they have a reflected
structure which is independent (and more persistent) of any further treatments.
As more and more objects are published, newer and newer ways of processing
them will occur unimpeded by any higher-level philosophy of use. This is why
DMEROON adopts low-level goals.

3.3 Allocation

Allocation faces two problems. Since DMEROON only exists via a support lan-
guage, DMEROON objects are embedded inside values of the support language

and therefore must be allocated (on the current site) by (or compatibly with)
the specialized allocation routines of this support language. This also imposes
useless DMEROON objects to be reclaimed by the GC of the support language
if any (otherwise, DMEROON brings its own GC which is currently Boehm’s
GC [BW88]). Finally to achieve non-local GC over part of the DMEROON space
[LQPI2] requires to be aware of the Exit instances that are reclaimed by the
GC of the support language.

The second problem concerns the initialization of DMEROON objects. Most
of the initialization protocols of other Object Systems use mutation to achieve
initialization. The cost of coherence maintainance is so high that mutability must
be kept to a minimum and clearly, initialization is not a mutation. Moreover since
DMEROON only deals with data, the initialization protocol cannot be based on
procedures which are not DMEROON objects. Finally the solution must also solve
the co-instantiation problem [Que93] i.e., the allocation of mutually referencing
objects without mutable fields.

The solution is very crude. A raw allocator exists that takes the lengths
of the indexed fields and returns an object with unspecified fields content (but
specified structure). Such an object is considered to be under initialization. While
in that state, it cannot be exported but all its fields can be written. This state is
ended when the user notifies DMEROON that the object is initialized. For sake of
reflectivity, a predicate allows to know whether an object is under initialization.

This initialization protocol is sufficient to build the usual class-specific allo-
cation procedures. Another allocation procedure of DMEROON is create-class
which for convenience returns fully initialized classes. create-class had been
individualized since class creation is an example of co-instantiation where the
Class object refers to its proper Fields that themselves refer to the Class that
introduced them. Some information is also precomputed at class creation time
and recorded into the fresh instances.

3.4 Coherency

When a mutable object i.e., an object containing at least one mutable field, is
exported i.e., is referenced from remote sites, it is always monitored by a netghbor
clock i.e., a clock owned by the same site, see figure 4. A clock counts the number
of modifications that occurred to the (possibly multiple) objects it monitors.
To speed up read accesses, remote objects are cached and clocks are used to
determine if the cache is valid. When a communication occurs between two sites,
the receiving site takes notice of the values of the clocks known by the emitting
site and updates its own view of these clocks: this is a lazy propagation of clocks
values. When a cache is filled, it records the value of the clock monitoring the
remotely read object. Therefore a cache is invalid if its monitoring clock is known
to be greater. This implements a lazy invalidation protocol and ensures causality
i.e., when a site receives information from another site, it cannot ignore the
mutations this other site was aware of. See [Que94b, Que94a] for more details.
Causality seems to be the weakest coherency protocol that still keeps a decent
semantics for a distributed memory viewed from a language, that is, offered by

a cached Objecta cached Clock

-

Y l an Entry

TN T
N

an Object a Clock another Object

Fig.4. DMEROON remote reference and clocks

an API.

3.5 Sharing

Of course the real interest of DMEROON it the ability to let objects be shared.
The basic mechanism is the following, see figure 5. When a site (Site2 on the
figure) has a reference onto an object of a remote site and the user asks for its
content: first, the site checks whether the class of that object is locally known.
If this is not the case, then the class is asked for (and of course recursively its
proper class, metaclass, fields, class of fields etc.) Once the class is present then
the stream of bytes corresponding to the marshaling of the original object can
be decoded and the content of the object can be locally cached and read. If the
object is mutable then the current time of its monitoring clock also accompany
its content.

DMEROON’s API makes it is possible to send the reference of an object to
a site. The application of the receiving site may ask (or wait) for an object to
arrive. DMEROON ensures eq-ness of objects i.e., if an object is exported and
(more or less directly) sent back to its owning site, the received object is eq to
the original object. This property confers objects an identity that may be used
(this is what is required for predefined classes to be ubiquitous). This property
avoids overflowing a site with multiple copies of a same object and allows to
trace back objects to their originating site for failure recovery.

Fig. 5. Exportation (class exported before object)

3.6 Clocks

DMEROON’s API offers to specify explicitly the clock that monitors an object.
On all sites there exists a general clock which, by default, monitors all exported
objects not already monitored by a clock. Because a clock monitors numerous
objects, and since the lazy invalidation protocol [Que94b, Que94a] when incre-
menting a clock, ipso facto invalidates all its cached objects, one may create
clocks and explicitly specify the objects they monitor. To have numerous clocks
allows to invalidate less objects when ticking but increases the transmission
overhead since more clocks are (lazily) spread over DMEROON space.

A clock can only monitors initialized mutable neighbor objects i.e., objects
owned by the site owning the clock. It is possible to change the clock that
monitors an object. If the new clock is a neighbor, it is set to monitor the object
and the former clock is ticked to force caching sites to notice this change. If the
new clock is not a neighbor then the object has to be implicitly migrated to the
site owning this clock.

3.7 Migration

DMEROON’s API also offers the opportunity to know the owning site of an object.
Muigration is also offered; migration allows to change the owner of an object.
Details on this protocol is omitted (it is inspired from [Piq91] with additional care
of clocks). Migration is useful for various purposes: (i) to move objects closer
from computations or, (ii) when shutting down a site, to preserve exported
objects (and their offspring) onto another (repository) site.

A class may be created with the immotile property to prevent its instances
from being migrated. This is for instance the case for all internal DMEROON
objects such as Tcp connections, Exit or Entry entities etc. This improves se-
curity with faithless DMEROON implementations: an immotile immutable object
owned by a faithful DMEROON implementation cannot be perverted.

3.8 Extending space

The last operation provided by DMEROON allows to explicitly add another site to
the whole DMEROON space containing the current site. The new site is specified

by an IP address and a port number. When this new site is made reachable, it
is reified into an instance of the Site class that can be used to identify this site
when transmitting (references of) objects.

4 Comparison

DMEROON provides a distributed shared memory above which computations
may be done. Although DMEROON is not yet publicly available, we may com-
pare it with Tcl-DP, ILU and Network Objects. There are many other distributed
shared memory systems distributing pages instead of objects that we do not con-
sider. Similarly we also ignore the many object-based languages with distribution
capabilities.

Tcl-DP [RS94] is an extension of Tcl/Tk standing for Tcl Distributed Pro-
gramming. Tcl-DP adds TCP and IP connection management, remote procedure
call (RPC), and distributed object protocols to Tcl/Tk. DMEROON improves on
Tcl-DP on several points: (i) objects are anonymous, (ii) they may contain
indexed sequences, (iii) they do not need to be explicitly distributed, (iv) ac-
cess to local or distributed objects is the same, (v) the graph of distribution is
not restricted to be acyclic, (vi) deallocation is automatic. Conversely, Tcl-DP
allows objects to be extended with new slots, to specify default values for slots,
to associate before- or after- daemons to slot access. Nevertheless Tcl as a bind-
ing language for DMEROON is envisioned and may be used to provide generic
functions and additional features such as these brought by Tcl-DP.

ILU [JSS95]is alibrary of programs providing a mechanism of remote method
invocation very close to CORBA. ILU is very complete and has been ported to
many machines. An object in ILU is a set of methods described by an interface
written in the ILU Interface Specification Language from which are automati-
cally generated stubs for CommoN Lisp, C, C++, Modula 3 and Python. DME-
ROON differs from ILU on several points: (i) DMEROON is dynamic and does
not require an interface language nor stub generation, (i) DMEROON offers
raw access to objects, eq-ness of objects and some reflective capabilities. (i)
DMEROON provides a shared memory with causal coherence. Of course, these
advantages are also its disadvantages since DMEROON is less efficient and does
not offer remote method invocation.

Network objects are described in [BNOW94] and serve as a basis for Obliq
[Car95]. They implement objects paired with methods in the framework of
Modula-3 and provide a strongly typed remote method invocation facility. Mod-
ula-3 manages its memory including network objects with a GC. Differences with
DMEROON are: network objects do not manage coherency, do not provide non
local GC, are only supported by Modula-3. Nevertheless, the goals and some
choices of network objects are very close to ours.

5 Conclusion

This paper is the first overview of DMEROON, a distributed shared memory with
causal coherence. Its API is described and some design choices are commented.
To sum it up: simplicity of the API was a major goal, reflectivity of the architec-
ture makes it rather open, its low-level approach data-focused should normally
make it a good vehicle for interoperability.
Last but most unfortunately, DMEROON is still under progress, may evolve
(as new support languages will be considered such as Tcl, Python, Emacs, C++
..), will unquestionably discover new problems (at least: persistence, fault-
tolerance and communication-efficiency) and is not yet available! Fresh informa-
tion may be obtained from URL:

ftp://ftp.inria.fr/INRIA/Projects/icsla/WWW/DMeroon.html

Bibliography

[BNOW94] A D Birrell, G Nelson, S Owicki, and E Wobber. Network objects. Tech-
nical Report 115, DEC — SRC, 1994.

[BW88] Hans J Boehm and M Weiser. Garbage collection in an uncooperative
environment. Software — Practice and Ezperience, 18(9), September 1988.

[Car95] Luca Cardelli. A language with distributed scope. In POPL ’95 — Twenty-
second Annual ACM symposium on Principles of Programming Languages,
pages 286—297, San Francisco, California, January 1995.

[JSS95] Bill Janssen, Denis Severson, and Mike Spreitzer. Inter-Language Unifica-
tion — ILU 1.8 Reference Manual. ftp://ftp.parc.xerox.com/pub/ilu, 1.8
edition, 1995.

[LQPI2] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting
the world. In POPL ’92 — Nineteenth Annual ACM symposium on Princi-
ples of Programming Languages, pages 39-50, Albuquerque (New Mexico,
USA), January 1992.

[Pig91] José Miguel Piquer. Indirect reference counting: A distributed garbage col-
lection algorithm. In PARLFE °91 — Parallel Architectures and Languages
FEurope, pages 150-165. Lecture Notes in Computer Science 505, Springer-
Verlag, June 1991.

[Quedl] Christian Queinnec. MEROON: A small, efficient and enhanced object
system. Technical Report LIX.RR.92.14, Ecole Polytechnique, Palaiseau
Cedex, France, November 1991.

[Qued3] Christian Queinnec. Designing MEROON v3. In Christian Rathke, Jirgen
Kopp, Hubertus Hohl, and Harry Bretthauer, editors, Object-Oriented
Programming in Lisp: Languages and Applications. A Report on the
ECOOP’93 Workshop, number 788, Sankt Augustin (Germany), Septem-
ber 1993.

[Que94a] Christian Queinnec. Locality, causality and continuations. In LFP ’94
- ACM Symposium on Lisp and Functional Programming, pages 91-102,
Orlando (Florida, USA), June 1994. ACM Press.

[Que94db] Christian Queinnec. Sharing mutable objects and controlling groups of
tasks in a concurrent and distributed language. In Takayasu Ito and Aki-
nori Yonezawa, editors, Proceedings of the Workshop on Theory and Prac-
tice of Parallel Programming (TPPP’94), Lecture Notes in Computer Sci-
ence 907, pages 70-93, Sendai (Japan), November 1994. Springer-Verlag.

[RS94] Lawrence A Rowe and Brian C Smith. Tl Distributed Programming (Tcl-
DP). ftp://toe.berkeley.edu/pub/multimedia/Tcp-DP, 3.1 edition, Febru-
ary 1994.

This article was processed using the B'TEX macro package with LLNCS style

